• Title/Summary/Keyword: 혼합시멘트

Search Result 800, Processing Time 0.031 seconds

The research about properties of modified low heat slag cement (개질 처리된 저발열 슬래그시멘트 특성에 관한 연구)

  • Kim, Hong-Joo;Kim, Won-Ki;Kim, Hoon-Sang;Lee, Won-Jun;Shin, Jin-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.677-680
    • /
    • 2008
  • The surface of particles was energetically modified by inter-grinding OPC and BFS in vibration mill for improvement of the early strength and low-heat evolution of concretes. BFS was pre-grinding in ball-mill to 2535(BS2) and 3245 $cm^2/g$(BS3), in blaine surface area. The inter-grinding time in vibration mill was changed from 10 minutes to 30 minutes. And Mixing ration of BFS to OPC was changed in 60, 70, 80%. After inter-grinding, the change of specific surface area, particle size distribution, hydration heat of cement and compressive strength of mortar were measured. As the result of comparison test with LHC, it was found that the mixture and inter-grinding time satisfying the value of over 100% of compressive strength for 7 days and under 170J/g of heat of hydration for 72 hours. and it was confirmed that the possibility of low heat slag cement utilizing blast furnace slag(BS2, BS3) with the low fineness in high volumes.

  • PDF

Prediction of Physical Characteristics of Cement-Admixed Clay Ground (점토-시멘트 혼합 지반의 물리적 특성 예측)

  • Park, Minchul;Jeon, Jesung;Jeong, Sangguk;Lee, Song
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.529-536
    • /
    • 2014
  • Physical characteristics of cement-admixed clay such as water content, specific gravity, unit weight and void ratio are main factors for strength, compressibility and prediction of consolidation behavior. In the past, the physical characteristics of admixed soils could be understanded through complex laboratory tests and field survey after construction. In this study, the tests were performed with conditions such as clay water contents 0%-170%, cement contents 5%-25% and curing period 3-90days after that analyzed for changes which are water content, specific gravity unit weight and void ratio of admixed soils. A prediction of properties through mechanical relationships with clay in situ water content, cement content and curing period could be proposed using the test results. The prediction equation of void ratio of admixed soils was derived using void ratio equation in geotechnical engineering and compared with test results of bangkok clay and then this study could be verified.

Physical Properties of Cement Using Slag as Raw Mix of Clinker (슬래그를 클링커 혼합원료로 사용한 시멘트의 물리적 특성)

  • Young-Jun Lee;Do-young Kwon;Bilguun Mend;Yong-Sik Chu
    • Resources Recycling
    • /
    • v.33 no.3
    • /
    • pp.12-20
    • /
    • 2024
  • The global cement industry emits approximately 2.9 billion tons of greenhouse gases, of which 1.74-1.89 billion tons are emitted from limestone, which is the main raw material for clinkers. Therefore, the feasibility of using slag, a non-carbonated CaO-based raw material, must be investigated, and the physical properties of cement must be considered. In this study, the mixing ratios of the raw mix and properties of cement were analyzed. The CaCO3 replacement ratio was limited when one type of slag was used; however, when the mixed slag was utilized, the CaCO3 replacement ratio increased by more than 12 %. The compressive strength of the slag-incorporated cement was lower than that of Ordinary Portland Cement (OPC). Therefore, the lime saturation factor (LSF) of the raw mix and fineness of the cement were increased to improve the compressive strength. The compressive strength of cement with improved fineness was similar to that of OPC for a CaCO3 replacement ratio of up to 6 %, and it decreased as the CaCO3 replacement ratio was increased to 9 %. When both fineness and LSF were increased, the compressive strength and flow value of the cement with a CaCO3 replacement ratio of 12 % were similar to that of OPC.

A Study on the Application of Paper Fly Ash as Stabilization/Hardening Agent (지반개량재로서 제지회의 활용에 관한 연구)

  • Lee, Yong-An;Lee, Hong-Ju;Kim, You-Seong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.2
    • /
    • pp.23-33
    • /
    • 2002
  • Examined a practical use possibility of paper fly ash that is industrial by-product as a stabilization/hardening agent. Performed unconfined compression test, scanning electron microscopy and pH analysis etc. for 100% paper fly ash-soil mixtures and each paper fly ash-soil mixtures that add cement as the second addition and sulfate component of small quantity for strength promotion and so on. In all cases, strength of admixtures increased according as curing time and mixing ratio increases but almost strength is revealed at mixing early and expressed maximum strength increase efficiency at mixing ratio 9% with raw soil. Compare with the case that use paper fly ash only, in case of cement amount 10~30% was included in paper fly ash, strength of admixtures increases two times and 40% was included, that increases from five to eight times.

  • PDF

A Study on the Basic Properties of Concrete and Low Heat-Blended Cement with Bottom Ash (바텀애시를 이용한 저발열 혼합시멘트 및 콘크리트의 기초물성에 관한 연구)

  • Kim, Won-Ki;Kim, Hoon-Sang;Kim, Hong-Joo;Lee, Won-Jun;Shin, Jin-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.685-688
    • /
    • 2008
  • This study has examined the effect of bottom ash(BA) on the properties of low heat-blended cement(LHC) and concrete. A number of binders were prepared by the replacement of LHC with BA in range of 5$^{\sim}$20wt%. The results showed that the final setting time of cement paste were delayed when the BA replaced part of the cement. However, The heat of hydration increased narrowly with adding BA in a early hydration period. The results also showed the inclusion of BA at replacement levels of 5$^{\sim}$10wt% resulted in an increase in compressive strength of the specimens compared with that of the control concrete and improved a resistance of concrete against the sulfate and chlorine ion.

  • PDF