• Title/Summary/Keyword: 혼합설비

Search Result 379, Processing Time 0.029 seconds

Optimization of Single-stage Mixed Refrigerant LNG Process Considering Inherent Explosion Risks (잠재적 폭발 위험성을 고려한 단단 혼합냉매 LNG 공정의 설계 변수 최적화)

  • Kim, Ik Hyun;Dan, Seungkyu;Cho, Seonghyun;Lee, Gibaek;Yoon, En Sup
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.467-474
    • /
    • 2014
  • Preliminary design in chemical process furnishes economic feasibility through calculation of both mass balance and energy balance and makes it possible to produce a desired product under the given conditions. Through this design stage, the process possesses unchangeable characteristics, since the materials, reactions, unit configuration, and operating conditions were determined. Unique characteristics could be very economic, but it also implies various potential risk factors as well. Therefore, it becomes extremely important to design process considering both economics and safety by integrating process simulation and quantitative risk analysis during preliminary design stage. The target of this study is LNG liquefaction process. By the simulation using Aspen HYSYS and quantitative risk analysis, the design variables of the process were determined in the way to minimize the inherent explosion risks and operating cost. Instead of the optimization tool of Aspen HYSYS, the optimization was performed by using stochastic optimization algorithm (Covariance Matrix Adaptation-Evolution Strategy, CMA-ES) which was implemented through automation between Aspen HYSYS and Matlab. The research obtained that the important variable to enhance inherent safety was the operation pressure of mixed refrigerant. The inherent risk was able to be reduced about 4~18% by increasing the operating cost about 0.5~10%. As the operating cost increases, the absolute value of risk was decreased as expected, but cost-effectiveness of risk reduction had decreased. Integration of process simulation and quantitative risk analysis made it possible to design inherently safe process, and it is expected to be useful in designing the less risky process since risk factors in the process can be numerically monitored during preliminary process design stage.

Characteristics of Flue Gas Using Direct Combustion of VOC and Ammonia (휘발성 유기 화합물 및 암모니아 직접 연소를 통한 배기가스 특성)

  • Kim, JongSu;Choi, SeukCheun;Jeong, SooHwa;Mock, ChinSung;Kim, DooBoem
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.131-137
    • /
    • 2022
  • The semiconductor process currently emits various by-products and unused gases. Emissions containing pollutants are generally classified into categories such as organic, acid, alkali, thermal, and cabinet exhaust. They are discharged after treatment in an atmospheric prevention facility suitable for each exhaust type. The main components of organic exhaust are volatile organic compounds (VOC), which is a generic term for oxygen-containing hydrocarbons, sulfur-containing hydrocarbons, and volatile hydrocarbons, while the main components of alkali exhaust include ammonia and tetramethylammonium hydroxide. The purpose of this study was to determine the combustion characteristics and analyze the NOX reduction rate by maintaining a direct combustion and temperature to process organic and alkaline exhaust gases simultaneously. Acetone, isopropyl alcohol (IPA), and propylene glycol methyl ether acetate (PGMEA) were used as VOCs and ammonia was used as an alkali exhaust material. Independent and VOC-ammonia mixture combustion tests were conducted for each material. The combustion tests for the VOCs confirmed that complete combustion occurred at an equivalence ratio of 1.4. In the ammonia combustion test, the NOX concentration decreased at a lower equivalence ratio. In the co-combustion of VOC and ammonia, NO was dominant in the NOX emission while NO2 was detected at approximately 10 ppm. Overall, the concentration of nitrogen oxide decreased due to the activation of the oxidation reaction as the reaction temperature increased. On the other hand, the concentration of carbon dioxide increased. Flameless combustion with an electric heat source achieved successful combustion of VOC and ammonia. This technology is expected to have advantages in cost and compactness compared to existing organic and alkaline treatment systems applied separately.

A Study on Property Change of Auto Body Color Design (자동차 바디컬러 디자인의 속성 변화에 관한 연구)

  • Cho, Kyung-Sil;Lee, Myung-Ki
    • Archives of design research
    • /
    • v.19 no.1 s.63
    • /
    • pp.253-262
    • /
    • 2006
  • Research of color has been developed and also has raised consumer desire through changing from a tool to pursue curiosity or beauty to a tool creating effects in the 20th century. People have been interested in colors as a dynamic expression of results since the color TV appeared. The meaning of colors has been recently diversified as the roles of colors became important to the emotional aspects of design. While auto colors have developed along with such changes of the times, black led the color trend during the first half of the 20th century from 1900 to 1950, a transitional period of economic growth and world war. Since then, automobile production has increased apace with the rapid economic growth throughout the world and automobiles became the most expensive item out of the goods that people use. Accordingly, increasing production induced facility investment in mass production and a technology leveling was achieved. Auto manufacturing processes are very complicated, auto makers gradually recognized that software changes such as to colors or materials was an easier way for the improvement of brand identity as opposed to hardware changes such as the mechanical or design components of the body. Color planning and development systems were segmented in various aspects. In the segmentation issue, pigment technology and painting methods are important elements that have an influence on body colors and have a higher technical correlation with colors than in other industries. In other words, the advanced mixture of pigments is creating new body colors that have not existed previously. This diversifies the painting structure and methods and so maximizes the transparency and depth of body colors. Thus, body colors that are closely related to technical factors will increase in the future and research on color preferences by region have been systemized to cope with global competition due to the expansion and change of auto export regions.

  • PDF

The Usefulness of Diffusion-weighted MR Imaging for Differentiation between Degenerative Spines and Infectious Spondylitis (퇴행성 척추와 감염성 척추염의 감별에 있어서 확산강조영상의 유용성)

  • 박원규;변우목;최준혁
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.2
    • /
    • pp.152-157
    • /
    • 2002
  • Purpose : The differential diagnosis between Modic type I degenerative spine and infectious spondylitis sometimes is difficult, because the affected bone marrows in both disease show similar signal intensity on conventional MR imaging. We evaluate the usefulness of diffusion-wighted MR imaging for differential diagnosis between Modic type I degenerative spine and infectious spondylitis. Materials and methods : The spin-echo and diffusion-weighted MR images of eight patients with Modic type I degenerative spines and 14 patients with infectious spondylitis diagnosed by clinical findings or CT-guided biopsies we re analyzed. The diffusion-weighted imaging sequence was based on reversed fast imaging with steady-state precession (PSIF). Signal intensity changes of the vertebral bone marrow on conventional spin-echo and diffusion-weighted MR imaging were compared between degenerative spine and infectious spondylitis. Results : On T1-weighte d images, the affeted bone marrow in both disease showed hypointense signals. On T 2-weighted images, all of type I degenerative spine and 11 of infectious spondylitis showed hyperintensity, and three of infectious spondylitis showed heterogeneo us mixed signal intensity. On diffusion-weighted MR images, all of type I degenerative spine were hypointense with peripheral high signal intensity to normal vertebral body, but infectious spondylitis was hyperintense (n = 11) and hypointense (n=3). Conclusion : Diffusion-weighted MR imaging is useful to differentiate Modic type I degenerative spine from infectious spondylitis. On diffusion-weighted images, the high singal intensity of bone marrow suggests infectious spondylitis, whereas the low signal intensity of bone marrow with peripheral focal high signal intensity suggests type I degenerative spine.

  • PDF

Parotid Gland Tumors (이하선종양에 대한 임상적고찰)

  • 박혁동;심윤상;오경균;이용식
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1993.05a
    • /
    • pp.97-97
    • /
    • 1993
  • Primary tumor arises infrequently in the parotid gland and generally, only about 20 to 40 percent of which prove to be malignant. They are characterized by histopathologic diversity, slow tumor growth, significant proportion of patients who have received previous treatment elsewhere. We have reviewed retrospectively 101 cases of parotid gland tumors which were treated for the recent eight years (1985-1992), Non-neoplastic tumor-like lesions were all excluded.

  • PDF

Characteristic Changes of Swine Manure by Air Suction Composting System (돈분 퇴비화 시 공기 흡입 시스템에 따른 퇴비화 특성 변화)

  • Lee, Dong-jun;Kim, Jung Kon;Jeong, Kwang-Hwa;Cho, Won-Mo;Ravindran, B.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.63-74
    • /
    • 2016
  • The objective of this study was to investigate the variations of physico-chemical properties during the swine manure composting, sawdust as the bulking agent was composted at different points (Top layer, Side of middle layer, Bottom layer). Air suction system with constant bottom aeration in bench scale reactors (30 L). The highest temperature was reached in the range of $58^{\circ}C$ to $62^{\circ}C$ on $3^{rd}$ day and this thermophilic phase (> $50^{\circ}C$) was continued for 3 days in all the treatment mixtures. However, the temperature was gradually decreased to room temperature at the end of 60 day composting process. Except control, the discharged ammonia ($NH_3$) was a maximum in the treatment order of Top layer>Bottom layer>Side of middle layer as 500 ppm, 162 ppm and 120 ppm, respectively, on the $4^{th}$ day and showing that Top layer point Air suction produce much more ammonia content than the other point. During the composting process, the total Kjeldahl nitrogen (TKN) was gradually increased due to the mass loss in the composting mixtures. At the same time, C/N ratio was decreased to Top layer, 13; Side of middle layer, 12 and Bottom layer, 13 at Air suction points. The significant reduction of C/N ratio in all different air suction system when manure was matured. The $NH_4-N$ to $NO_3-N$ ratio was recorded as 10.52 at the initial stage of the compost mixtures and reduced to 0.97 (Top layer), 0.70 (Side of middle layer), 3.2 (Bottom layer) because of manure decomposition. The overall results revealed that Top layer and Side of middle layer Air suction is a suitable option when compared other point for high quality composts.

The mechanism of black core formation (블랙코어 형성 메커니즘)

  • Park Jiyun;Kim Yootaek;Lee Ki-Gang;Kang Seunggu;Kim Jung-Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.5
    • /
    • pp.208-215
    • /
    • 2005
  • The 10mm diameter aggregates made of clay, carbon and $Fe_2O_3$ were prepared to investigate the mechanism of black core formation. The specific gravity, absorption rate, percent of black core area, fracture strength, total Fe analysis, and XRF were measured at various compositions, sintering temperatures, sintering times, sintering atmospheres, and sintering methods. Small addition of $Fe_2O_3$ did not affect physical properties of the aggregates; however, the percent of black core area increased with increasing carbon contents and increasing sintering temperature. Specific gravity of the aggregates decreased and the water absorption ratio increased with increasing percent of black core area. The aggregates sintered at oxidation atmosphere showed clear border between shell and black core area. Hence, the aggregates sintered at reduction atmosphere showed only black core area in the cross-section of the aggregates. The specific gravity of the aggregates sintered at reduction atmosphere increased with increasing carbon contents and that was the lowest of all comparing other aggregates sintered at different atmospheres. Adsorption rate increased with increasing carbon contents at all atmospheres. The fast sintered aggregates showed lower specific gravity, higher absorption rate, and more black core area than the normally sintered aggregates. It was turned out that the aggregates having more black core area showed higher fracture strength than that of aggregates with no black core area. From the total Fe analysis, the concentration of Fe and FeO was higher at black core area than at shell. Because the concentration of $Fe_2O_3$ in the shell was higher than other area, the color of the shell appeared red. It was also turned out from the XRF analysis that carbon was exist only at black core area.

Microbiological Hazard Analysis of Sundae (Korean Sausage) Made of Meat By-Products (식육 부산물을 활용한 순대의 미생물학적 위해 분석)

  • Cheong, Jin-Sook;Kim, Yun Jeong;Om, Ae-Son
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.3
    • /
    • pp.181-188
    • /
    • 2022
  • Despite the recent increase in the consumption level of the processed meat-byproducts, the health and safety issue has consistently been raised in the processes of production, distribution and consumption. The purpose of this study is to analyze and evaluate the microbiological hazard elements in the Korean sausage, "Sundae," to present not only the safety standard of meat by-product vendors based on HACCP (Hazard Analysis Critical Control Point), but also the quality control criteria and sanitary arrangements of small manufacturers. For the study, the microbiological hazards in 24 raw materials, 7 manufacturing processes, 40 facilities and tools, 17 workplace environment, and 12 workers were analyzed. The analysis revealed the hazardous elements in the initial stages with 6.28 and 4.07 log CFU/g of total aerobic count and coliforms, respectively, detected from the porcine blood and 3.23 log CFU/g of coliforms from the porcine small intestines. The result also showed that the total aerobic counts and coliforms in the process of mixing and filling process exceeds the standards in the hygiene guidelines by Natick with the total aerobic counts of 5.23, 5.45 log CFU/g, and the coliforms of 3.25, and 3.31 log CFU/g, respectively. Although the detected total aerobic count and the coliforms in the filling and washing rooms exceeded the standards, it was found that the total aerobic count was significantly reduced by 98% after cleaning and disinfecting and no coliforms was detected in any process thereafter. In order to achieve high level of safety in the manufacturing processes of Sundae, the separation of washing and disinfection room from the other sections and the sanitation control of the workers must be preceded, along with strict monitoring in the storage and distribution processes. The study raises necessity for additional studies for the safety evaluation of the processed meat-byproducts and further researches on the validity of the critical limits.

Observation of Methane Flux in Rice Paddies Using a Portable Gas Analyzer and an Automatic Opening/Closing Chamber (휴대용 기체분석기와 자동 개폐 챔버를 활용한 벼논에서의 메탄 플럭스 관측)

  • Sung-Won Choi;Minseok Kang;Jongho Kim;Seungwon Sohn;Sungsik Cho;Juhan Park
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.436-445
    • /
    • 2023
  • Methane (CH4) emissions from rice paddies are mainly observed using the closed chamber method or the eddy covariance method. In this study, a new observation technique combining a portable gas analyzer (Model LI-7810, LI-COR, Inc., USA) and an automatic opening/closing chamber (Model Smart Chamber, LI-COR, Inc., USA) was introduced based on the strengths and weaknesses of the existing measurement methods. A cylindrical collar was manufactured according to the maximum growth height of rice and used as an auxiliary measurement tool. All types of measured data can be monitored in real time, and CH4 flux is also calculated simultaneously during the measurement. After the measurement is completed, all the related data can be checked using the software called 'SoilFluxPro'. The biggest advantage of the new observation technique is that time-series changes in greenhouse gas concentrations can be immediately confirmed in the field. It can also be applied to small areas with various treatment conditions, and it is simpler to use and requires less effort for installation and maintenance than the eddy covariance system. However, there are also disadvantages in that the observation system is still expensive, requires specialized knowledge to operate, and requires a lot of manpower to install multiple collars in various observation areas and travel around them to take measurements. It is expected that the new observation technique can make a significant contribution to understanding the CH4 emission pathways from rice paddies and quantifying the emissions from those pathways.