• 제목/요약/키워드: 혼합물온도

검색결과 471건 처리시간 0.022초

Zn-Al혼합물 퇴적분체의 최소발화온도 (Minimum Ignition Temperature of Zn-Al Dust Mixture Layer)

  • 한우섭;이수희
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2012년도 춘계학술발표회 초록집
    • /
    • pp.345-348
    • /
    • 2012
  • 본 연구는 Zn-Al혼합물 분진의 화재폭발사고예방을 위한 안전자료 확보를 목적으로 최소발화온도를 실험적으로 조사하였다. Zn-Al혼합물의 최소발화온도 측정은 퇴적두께 10 mm, 직경 100 mm의 원형 형태로 퇴적된 시료를 대상으로 가열판의 승온속도 $20^{\circ}C/min$의 조건에서 실시하였다. 그 결과, $280^{\circ}C$에서 Zn-Al혼합물 분체는 가열 후 1000 s부터 발열을 통하여 급격히 온도가 상승하여 발화 여부 판단기준이 되는 $450^{\circ}C$를 넘어 $600^{\circ}C$에 다다르며 시간과 함께 감소하였으며 임계 최소발화온도는 $280^{\circ}C$로 나타났다. 퇴적Zn-Al혼합물 분체의 최소발화온도는 문헌에 제시된 Al에 비하여는 낮은 것으로 나타났다.

  • PDF

노말부탄올과 파라자일렌 혼합물의 최소자연발화온도 측정 및 예측 (Measurement and Prediction of Autoignition Temperature of n-Butanol+p-Xylene Mixture)

  • 하동명
    • 한국가스학회지
    • /
    • 제20권5호
    • /
    • pp.1-8
    • /
    • 2016
  • 최소자연발화온도는 가연성물질이 주위의 열에 의해 스스로 발화하는 최저온도이다. 최소자연발화온도는 유기혼합물중 가연성 액체혼합물의 안전한 취급을 위해서 중요한 지표가 된다. 본 연구에서는 ASTM E659 장치를 이용하여 가연성 혼합물인 n-butanol+p-xylene 혼합물의 최소자연발화온도를 측정하였다. 2성분계를 구성하는 순수물질인 n-butanol과 p-xylene의 최소자연발화온도는 각 각 $340^{\circ}C$, $557^{\circ}C$로 측정되었다. 그리고 측정된 n-butanol+p-xylene 혼합물의 최소자연발화온도는 제시된 식에 의한 예측값과 적은 평균절대오차에서 일치하였다.

Mixed LJ particles MD를 이용한 혼합물의 밀도, 온도 별 방사 분포 연구

  • 이민준;박희수
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제2회(2013년)
    • /
    • pp.53-65
    • /
    • 2013
  • 두 물질의 단순 혼합물에서 각 물질이 어떤 상을 가지고 행동하는지는 순수 과학은 물론이고 그것을 적용하는 공학에서도 역시 중요하다. 계를 표현하는 여러 가지 방법이 있지만, Lennard-Jones potential이 그 중 가장 단순하면서도 효과적이기 때문에 널리 쓰인다. 이 연구는 입자간의 에너지가 Lennard-Jones potential로 표현된 혼합물의 상변화를 Chemworks2의 "Mixed LJ particles MD" 프로그램으로 모사 실험 하고, 그 결과를 방사 분포 함수를 통해 분석했다. 분석을 통해서 Lennard-Jones 상수가 다른 두 가지의 경우에 대하여 각각 혼합물의 온도와 밀도 변화에 따른 상변화가 다르게 나타나는 것을 보였다.

  • PDF

Limonene - Expanded Polystyrene 혼합물의 자연발화 특성 (Autoignition Characteristics of Limonene - Expanded Polystyrene Mixture)

  • 송영호;하동명;정국삼
    • 한국화재소방학회논문지
    • /
    • 제18권1호
    • /
    • pp.1-6
    • /
    • 2004
  • 감용제 limonene을 이용하는 EPS 자원 재활용 공정에 있어서, limonene - EPS 혼합 액체의 저장$.$취급시의 화재위험성 평가에 대한 기초 자료로 제시하고자 혼합물의 농도 및 시료양의 변화에 따른 최저발화온도를 측정하였고, 발화와 비발화 영역을 비교하였다. 발화온도를 예측하는데 있어서 가장 과학적인 원리로서 이용되고 있는 발화 지연 시간, 활성화 에너지 및 발화온도의 관계식을 선형회귀분석을 이용하여 ln t = 0.704/T-5.819로서 제시하였다. 또, 가연성 혼합물의 농도 변화에 따른 발화위험성을 예측하기 위하여 혼합물의 농도와 발화온도의 관계식을 비선형회귀분석을 이용하여 $T_m=248.32+69.27X+172.60X^2$로서 제시하였다. 그 결과, 발화 지연 시간과 발화온도와의 관계식 및 혼합물의 농도와 발화온도와의 관계식에 의해서 limonene - EPS 혼합물의 발화온도의 추정이 가능하게 되었다.

최대입경, 공극률, 온도가 다공성 아스팔트 혼합물의 균열저항성 및 수분민감성에 미치는 영향 (Effect of Maximum Aggregate, Porosity, and Temperature on Crack Resistance and Moisture Susceptibility of Porous Asphalt Mixtures)

  • 유인균;이수형;박기수;윤강훈
    • 한국산학기술학회논문지
    • /
    • 제22권3호
    • /
    • pp.611-619
    • /
    • 2021
  • 다공성 아스팔트 포장은 혼합물 속에 포함된 20%정도의 공극으로 인해 도로의 수막현상을 억제하여 교통사고를 줄이고 교통소음을 획기적으로 줄이는 등 다양한 순기능을 갖는다. 그러나 다공성 아스팔트 혼합물은 혼합물 속에 포함된 20% 정도의 공극 때문에 혼합물의 내구성이 취약하게 되며, 이러한 취약한 내구성이 다공성 포장의 적용을 확장하는데 제약요인이 되고 있다. 본 연구의 목적은 다공성 포장의 내구성을 향상시키기 위해 최대입경, 온도 그리고 공극률의 변화가 혼합물의 균열저항성 및 수분민감성 등 혼합물의 내구성에 미치는 영향을 평가하는 것이다. 다공성 아스팔트 혼합물의 내구성을 평가하기 위해 간접인장강도를 균열저항성 및 수분민감성의 척도로 설정하였다. 공극률이 20%로 동일하고 최대입경이 13mm, 10mm, 8mm인 혼합물에 대하여 상온과 동결융해를 경험한 시료에 대하여 간접인장강도 시험을 실시하였다. 그리고 최대입경 10mm인 동일한 재료로 공극이 20%와 22%인 혼합물에 대하여 동일한 시험을 실시하였다. 실험결과 공극률은 20%로 동일하고 최대입경의 변화와 온도의 변화에 유의한 차이를 보이는 것으로 나타났다. 특히 실험온도에 대해서는 상온과 저온에서 유의한 차이를 보였다. 최대입경의 변화에 대해서는 상온에서 8mm보다 13mm가 분명히 높은 강도를 보이고 저온에서는 유의한 차이를 보이지 않았다. 그리고 공극률과 온도의 변화에 대한 실험에서는 온도에 대해서는 유의한 차이를 보였지만 20%와 22% 사이의 2% 공극 차이는 내구성에 유의한 차이를 보이지 못했으며 서로간의 교호작용도 없는 것으로 나타났다. 앞으로 다공성 아스팔트 혼합물의 내구성에 미치는 요소들의 정량적인 평가를 통해 보다 내구성 있는 다공성 아스팔트포장을 개발해 나갈 필요가 있다.

새로운 Simple Performance Testing 장비를 이용한 중온형 폼드 아스팔트 혼합물의 공용성 평가 (Evaluation of Warm Mix Asphalt Mixtures with Foaming Technology and Additives Using New Simple Performance Testing Equipment)

  • 김용주;임수혁;이호신;황성도
    • 한국도로학회논문집
    • /
    • 제10권4호
    • /
    • pp.19-29
    • /
    • 2008
  • 최근에 $135^{\circ}C^{\circ}C$ 이하의 온도에서 생산되는 중온형 아스팔트 혼합물의 새로운 생산 기술이 전세계적으로 개발되고 있다. 본 연구에서는 가열 아스팔트보다 낮은 온도에서 아스팔트를 효과적으로 골재에 분산시켜 코팅할 수 있는 폼드 아스팔트 기술을 이용하여 중온형 아스팔트 혼합물을 생산하였으며, 최근 개발된 새로운 Simple Performance Testing 장비를 이용하여 다양한 온도와 하중조건 하에서 중온형 폼드 아스팔트 혼합물의 공용성 특성을 평가하였다. 중온형 폼드 아스팔트 혼합물은 FG 64-22의 아스팔트를 거품상태로 만들어 중온으로 가열된 골재에 뿌려서 제조하였으며, 중온형 아스팔트 혼합물은 중온의 골재에 FG 64-22의 아스팔트를 액상 상태로 첨가하여 제조하였다. 중온형 폼드 아스팔트 혼합물은 중온형 아스팔트 혼합물보다 높은 동탄성계수와 Flow Number를 나타내었다. 따라서, $100^{\circ}C$로 가열된 골재를 사용하여 생산된 중온형 폼드 아스팔트 혼합물은 중온형 아스팔트 혼합물에 비하여 피로균열 및 소성변형 저항에 우수한 것으로 평가되었다.

  • PDF

n-Pentanol p-Xylene 과 혼합물의 최소자연발화온도와 발화지연시간의 측정 및 예측 (Measurement and Prediction of Autoignition Temperature (AIT) and Ignition Delay Time of n-Pentanol and p-Xylene Mixture)

  • 하동명
    • 한국화재소방학회논문지
    • /
    • 제31권5호
    • /
    • pp.1-6
    • /
    • 2017
  • 가연성물질의 화재 및 폭발 특성치는 안전한 취급, 저장, 수송, 처리 및 폐기하는데 반드시 필요하다. 공정 안전을 위한 대표적인 연소특성치로 최소자연발화온도(AIT)를 들 수 있다. 최소자연발화온도는 가연성 액체의 안전한 취급을 위해서 중요한 지표가 된다. 최소자연발화온도는 가연성물질이 주위의 열에 의해 스스로 발화하는 최저온도이다. 본 연구에서는 ASTM E659 장치를 이용하여 가연성 혼합물인 n-Pentanol과 p-Xylene 혼합물의 최소자연발화온도와 발화지연시간을 측정하였다. 2성분계를 구성하는 순수물질인 n-Pentanol과 p-Xylene의 최소자연발화온도는 각각 $285^{\circ}C$, $557^{\circ}C$로 측정되었다. 그리고 측정된 n-Pentanol과 p-Xylene 혼합물의 최소자연발화온도와 AIT에서의 발화지연시간의 실험값은 제시된 식에 의한 계산값과 적은 평균절대오차에서 일치하였다. 따라서 본 연구에서 제시한 예측식들을 이용하여 n-Pentanol과 p-Xylene 혼합물의 다른 조성에서도 최소자연발화온도와 발화지연시간을 예측이 가능하다.

Poly(ethylene-co-octene) - Ethylene - 1-Octene 3성분계 혼합물의 상거동 (Phase Behavior of Ternary Mixture of Poly(ethylene-co-octene) - Ethylene - 1-Octene)

  • 이상호;손진언;정성윤;한상훈
    • Elastomers and Composites
    • /
    • 제41권2호
    • /
    • pp.116-124
    • /
    • 2006
  • Poly(ethylene-co-15.3 mole% octene) ($PEO_{15}$) - 1-옥텐 2성분계 혼합물과 $PEO_{15}$와 (에틸렌 + 1-옥텐) 혼합용매로 이루어진 3성분계 혼합물의 상거동을 $160^{\circ}C$와 1,000 bar의 영역까지 측정하였다. $PEO_{15}$ - 에틸렌 - 1-옥텐 혼합물에서 에틸렌의 함량이 증가함에 따라 cloud-point 곡선이 측정되는 압력이 급격하게 높아졌다. 에틸렌 함량이 18 wt% 보다 낮을 경우, $PEO_{15}$ -에틸렌 - 1-옥텐 혼합물에서 bubble-point 곡선과 cloud-point 곡선이 모두 관측되었다. 에틸렌 함량이 증가함에 따라 $PEO_{15}$ - 에틸렌 - 1-옥텐 혼합물에서 bubble-point 곡선이 관측되는 온도범위는 좁아졌으며, $PEO_{15}$ - 에틸렌 - 1-옥텐 혼합물이 단일상으로 존재하는 온도-압력 영역이 현저히 감소하였다. 에틸렌 함량에 따라 단일상 영역이 감소하는 것은 $PEO_{15}$와 (에틸렌 + 1-옥텐) 혼합용매 사이에 작용하는 분산인력이 줄어들기 때문이다. 에틸렌을 36 wt% 보다 적게 함유한 $PEO_{15}$ - 에틸렌 - 1-옥텐 혼합물의 단일상 영역은 온도가 높아짐에 따라 감소하였다. 이와는 대조적으로 에틸렌을 50 wt% 보다 많게 함유한 $PEO_{15}$ - 에틸렌 - 1-옥텐 혼합물의 단일상 영역은 온도가 녹아짐에 따라 증가하였다. $PEO_{15}$ 용해도를 낮추는 혼합용매 사이의 극성인력과 $PEO_{15}$ 용해도를 높이는 혼합용매의 밀도는 온도가 낮아짐에 따라 증가한다. 에틸렌 함량이 50 wt% 보다 많을 경우, 혼합용매들의 극성인력 효과가 밀도 효과보다 커서 온도가 낮아짐에 따라 cloud-point 압력은 증가하였다. 에틸렌 함량이 50 wt% 보다 적을 경우, 혼합용매들의 극성인력 효과가 밀도 효과보다 작아서 온도가 낮아짐에 따라 cloud-point 압력은 감소하였다.

n-Pentanol과 Ethylbenzene 혼합물의 최소자연발화온도의 예측 (Prediction of Minimum Spontaneous Ignition Temperature(MSIT) of the Mixture of n-Pentanol and Ethylbenzene)

  • 하동명
    • 한국가스학회지
    • /
    • 제16권2호
    • /
    • pp.45-51
    • /
    • 2012
  • 최소자연발화온도는 가연성혼합물이 화염이나 스파크 없이 주위로부터 충분한 열에너지를 받아서 스스로 발화하는 최저온도를 말한다. 본 연구에서는 ASTM E659 장치를 이용하여 가연성 혼합물인 n-Pentanol+Ethylbenzene계를 구성하는 순수물질과 혼합물의 최소자연발화온도를 측정하였다. Pentanol과 Ethylbenzene의 측정된 최소자연발화온도는 각 각 $285^{\circ}C$, $475^{\circ}C$ 였다. 그리고 n-Pentanol+Ethylbenzene 계의 예측된 최소자연발화온도는 실험값과 적은 평균절대오차에서 일치하였다.

분자동역학 모의실험을 이용한 Lennard-Jones 이성분 혼합물의 섞임 자유에너지 및 섞임 엔트로피 계산

  • 이아영;정유진
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제3회(2014년)
    • /
    • pp.311-323
    • /
    • 2014
  • 분자동역학 모의실험을 이용하여 간단한 van der Waals 상호작용하는 이성분 혼합물 계의 섞임 자유에너지 및 섞임 엔트로피 등 섞임과 관련된 열역학 함수들을 계산하는 방법을 소개한다. 각 혼합물의 과잉 자유에너지는 열역학 적분 (thermodynamic integration)방법을 이용하여 계산하고, 이성분 혼합물의 섞임 관련 열역학 함수들은 Hess의 법칙을 확장함으로써 구한다. 계산 결과로부터 온도가 증가할수록 계의 섞임 Helmholtz 자유에너지는 감소하며, 섞임 내부에너지도 감소함을 알 수 있다. 섞임 엔트로피는 온도가 증가할수록 이상기체의 섞임 엔트로피에 접근함을 알 수 있다. 섞임 Helmholtz 자유에너지에 대한 섞임 내부에너지와 섞임 엔트로피 기여도를 조사한 결과 이 계의 섞임 과정을 주도하는 추진력은 엔트로피에 의한 것임을 알 수 있다. 본 연구 방법과 결과를 이용함으로써 학부생들이 혼합물의 열역학 성질을 이해하는데 도움을 주리라 기대한다.

  • PDF