• Title/Summary/Keyword: 혼합모래

Search Result 354, Processing Time 0.022 seconds

Characteristics of Rigid-Soft Particle Mixtures with Size Ratio (입자크기비에 따른 강-연성 혼합재의 공학적 특성)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Kim, Rae-Hyun;Lee, Woo-Jin;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.125-135
    • /
    • 2008
  • Rigid-soft particle mixtures, which consist of sand and rubber, are investigated for the understanding of the stress-deformation and elastic moduli. Specimens are prepared with various size ratio sr between sand and rubber particles, and different volumetric sand fraction sf. Small strain shear waves are measured under $K_o$-loading condition incorporated with the stress-deformation test by using oedometer cell with bender elements. The stress-deformation and small strain shear wave characteristics of rigid-soft particle mixtures show the transition from a rigid particle behavior regime to a soft particle behavior regime under fixed size ratio. A sudden rise of $\Lambda$ factor and the maximum value of the $\zeta$ exponent in $G_{max}=\;{\Lambda}({\sigma}'_{o}/kPa)^{\zeta}$ are observed at $sf\;{\approx}\;0.4{\sim}0.6$ regardless of the size ratio sf. Transition mixture shows high sensitivity to confining stress. The volume fraction for the minimum porosity may depend on the applied stress level in the rigid-soft particle mixtures because the soft rubber particles easily distort under load. In this experimental study, the size ratio and volumetric sand fraction are the important factors which determine the behavior of rigid and soft particle mixtures.

Tensile Strength Measurement on Compacted Sand-Bentonite Mixtures (다짐된 모래-벤토나이트 혼합토의 인장강도 측정)

  • Jung, Soo-Jung;Kim, Tae-Hyung;Kim, Chan-Kee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.377-384
    • /
    • 2006
  • Theoretical and experimental study of the unconfined penetration (UP) test was conducted to suggest a new test method (referred to as IUP, Improved Unconfined Penetration) for determination of the tensile strength of compacted sand-bentonite mixtures. The tensile strength of compacted mixtures can be calculated from limit analysis based on the theory of perfect plasticity. The measurement errors in new test method were reduced by improving the UP device. Preliminary experiment results indicate that the tensile strength increases with increasing the disk size, loading rate and pH level. In addition, the disk diameter with 25.4 mm and the loading rate with 0.5%/min~1%/min are most suitable condition for the IUP test. The reliability of IPU test was verified by through the fact that good agreement between the IUP and conventional split tensile test results is observed.

An Experimental Study on the Physical Properties of Mortar Using EEZ Sand and Crushed Sand (부순모래와 EEZ모래를 혼합사용한 모르타르의 기초물성에 관한 실험적 연구)

  • Park Jong-Ho;Jang Jae-Bong;Na Chul-Sung;Cho Bong-Suk;Kim Jae-Hwan;Kim Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.33-36
    • /
    • 2005
  • Recently, Trouble of sand supply is occurred according to exhaustion of natural sand resources. therefore, various measures are proposed for solution of trouble of sand supply. also the government settled trouble of sand supply through application of EEZ sand and crushed sand. but because both EEZ sand and crushed sand are poor against general sand, they lead to lowering of quality of ready-mixed concrete. Therefore, this study evaluated physical properties of mortar using EEZ sand and crushed sand and applied evaluation result to fundamental data The result of this study have shown that quality of mortar using EEZ sand and crushed sand independently is poor against general mortar. but, mortar flow and compressive strength is increased in case of mixing 222 sand and crushed sand properly.

  • PDF

Elastic Wave Characteristics in Cemented Engineered Soils (고결된 Engineered Soils의 탄성파 특성)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Lee, Woo-Jin;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.2
    • /
    • pp.87-97
    • /
    • 2008
  • Behaviors of cemented engineered soils, composed of rigid sand particle and soft rubber particle, are investigated under $K_o$ condition. The uncemented and cemented specimens are prepared with various sand volume fractions to estimate the effect of the cementation in mixtures. The vertical deformation and elastic wave velocities with vertical stress are measured. The bender elements and PZT sensors are used to measure elastic wave velocities. After cementation, the slope of vertical strain shows bilinear and is similar to that of uncemented specimen after decementation. Normalized vertical strains can be divided into capillary force, cementation, and decementation region. The first deflection of the shear wave in near field matches the first arrival of the primary wave. The elastic wave velocities dramatically increase due to cementation hardening under the fixed vertical stress, and are almost identical with additional stress. After decementation, the elastic wave velocities increase with increase in the vertical stress. The effect of cementation hinders the typical rubber-like, sand-like, and transition behaviors observed in uncemented specimens. Different mechanism can be expected in decementation of the rigid-soft particle mixtures due to the sand fraction. a shape change of individual particles in low sand fraction specimens; a fabric change between particles in high sand fraction specimens. This study suggests that behaviors of cemented engineered soils, composed of rigid-soft particles, are distinguished due to the cementation and decementation from those of uncemented specimens.

Consolidation Characteristics of Dredged Mixed Soil with Inserted Materials (혼입재료에 따른 준설 매립 혼합토의 압밀 특성)

  • Yoon Hyun-Suk;Lee Ki-Ho;Park Jun-Boum;Kim Jae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.13-20
    • /
    • 2005
  • In this study, consolidation test and numerical analysis were performed with the aim of investigating the characteristics of consolidation behavior of mixed soil with the amount and particle shape of inserted materials. Mixed soil was made up of matrix (dredged clay) and inserted material (crashed oyster shell and/or sand). The concept of stress share ratio was introduced to evaluate the consolidation characteristics of mixed soils. And the finite differential numerical analysis was carried out by applying the Mikasa's consolidation theory. From the results of experiments and numerical analysis, it was verified that mixed soil consolidation behavior is affected by changes in inserted material. When a similar amount of granular material was inserted, the compressibility of the clay matrix of oyster shell mixed soil was smaller than that of sand mixed soil.

Optimum Conditions of Simple Solidifying Agent for the Improvement of Loose Sand Ground (느슨한 모래지반 개량을 위한 간편고화재의 최적 배합비 및 혼합률)

  • Kwon, Ho-Jin;Jeong, Ki-Ryong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.15-21
    • /
    • 2004
  • This study is to develop simple solidifying agent to improve loose sand ground by admixing or injecting. This paper studied the optimum mixing ratio of micro cement, bentonite, chemistry admixture, plasticizer, accelerator for the optimum fluidity and strength. The optimum mixing ratio of micro cement and bentonite is 70% : 20%, the optimum ratio of the weight of rapid solidifying agent to the weight of total improved soil is about 8%, the optimum curing period is five days.

  • PDF

Shear Behaviour of Cemened River Sand (고결된 하상모래의 전단거동)

  • Jeong, Woo-Seob;Kim, Yung-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.2
    • /
    • pp.35-45
    • /
    • 2007
  • In this research, artificially cemented sand which is made of a few portland cement and Nak-Dong river sand was researched closely. For providing the fundamental data which is needed in design and analysis of levee material, the shear behavior of cemented sands was investigated by drained triaxial test, and analyzed in accordance with the increase of cement content. The peak strength and elasitc modulus increased and dilation of cemented sand was restricted by the cementation, but after breakage of the cementation, dilation increased, cohesion intercetpt and friction angle increased with the increase of cement content and strain softening behavior appeared in stress-strain curve.

Undrained Behavior of Clay-Sand Mixtures under Triaxial Loading

  • Shin, Joon-Ho;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.71-81
    • /
    • 1999
  • A study on the undrained behavior of isotropically consolidated clay-sand mixtures was carried out using the automated triaxial testing apparatus. Overconsolidated ratio, effective mean pressure and clay content( up to 20% bentonite) were the factors varied in the experimental investigation. Undrained behavior(strength and pore water pressure generation during shear in triaxial loading) depends upon overconsolidation ratio, confining pressure and clay content. Significant changes in undrained compression characteristics occurred at around 20% of clay contents in the sand. The test results were analyzed and their behaviors were interpreted within the framework of plasticity constitutive model for clay-sand mixtures. Possible physical bases for the proposed forms are discussed. Validation of the applied model using the laboratory results is also given.

  • PDF

Effect of Animal Organic Soil Amendment on Growth of Korean Lawngrass and Kentucky Bluegrass (동물성 유기질 개량재가 들잔디 및 캔터키 블루그래스 잔디생육에 미치는 효과)

  • Koh, Seuk-Koo;Tae, Hyun-Sook;Ryu, Chang-Hyun
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.1
    • /
    • pp.33-40
    • /
    • 2006
  • Many soil amendments have been used nowadays to improve physical and chmical condition of turf soil, which might ultimately optimize turfgrass growth in golf courses. This study was carried out to Investigate the effects of new organic soil amendment containing pig excreta 50% and sawdust 50% on growth of zoysiagrass (Zoysia japonica L.) and kentucky bluegrass (Poa pratensis L.) in greenhouse. Three applicable treatments with soil mixtures of 10, 20, and 30% (v/v) animal organic soil amendment (AOSA) with sand, were tested for chemical property, physical property, visual quality and root length of zoysiagrass and Kentucky bluegrass. As results, application of $10{\sim}30%$ AOSA mixtures were proper to grow turfgrass in soil nutrition. Especially, the treatment with 20% AOSA mixtures showed 0.7% in organic matter, which meets to green standard of USGA. Also, 30% AOSA mixtures was 1.1% in organic matter, which might be desirable for zoysiagrass-planted golf courses in Korea. It was turned out that addition of AOSA decreased the hydraulic conductivity in soil physical property Because the sand possess high hydraulic conductivity, it is recommended to combine $10{\sim}30%$ AOSA with sand in order to sustain soil balance. The treatment with $10{\sim}30%$ AOSA noticeably increased visual quality of both zoysiagras and Kentucky bluegrass during 90 days. However, treatments with either 20% or 30% AOSA were effective to develop root length of zoysiagrass but treatments with 20% AOSA were more effective than that of 30% AOSA mixtures to promote root length of Kentucky bluegrass at 60 days. In conclusion, considering all vital factors such as visible quality, root growth, organic matter content, and economical efficiency, was taken, it is recommended that a $20{\sim}30%$ mixture of AOSA with sand is good for the growth of zoysiagrass and 20% mixture for Kentucky bluegrass.

An Experimental Study on the Strength of Deep Mixing Specimen According to the Stabilizer Content (안정재 혼합비에 따른 심층혼합 시료의 압축강도에 관한 실험적 연구)

  • Park, Choon-Sik;Kim, Jong-Hwan;Kim, Jung-Joo;Baek, Jin-Sool
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.27-36
    • /
    • 2014
  • In this study, laboratory test was carried out on uniaxial compressive strength by making 320 specimens in total, which were divided into two groups considering the curing time of 7 and 28 days for 80 cases mixed with stabilizers of 8%, 10%, 12%, 14% of 20 cases of clayey, sandy, and gravel mixed ground conditions to understand laboratory strength characteristics of deep mixing specimen for field application in various ground conditions. As a laboratory result, all specimen showed a clear tendency to have uniaxial compressive strength increase as the curing time and the stabilizer mixing ratio increased, and the strength increments depending on the age by ground types were, around 40.0% for clayey and gravel mixed grounds, 48.4% for sandy grounds which was the highest, and for the increment of stabilizers, around 37.0% for grounds with mixing ratio less then 14%, and 49.6% when the ratio was 14% which was the highest. Also, with sandy grounds, it showed a tendency to have a constant amount of strength increment as the stabilizer mixing ratio increased, for clayey mixed grounds, the strength increment tendency seemed to be similar to gravel mixed grounds. Due to these tendencies, it is concluded that we are able to propose a stabilizer mixing ratio for various ground conditions.