• Title/Summary/Keyword: 호흡 모델

Search Result 164, Processing Time 0.032 seconds

Development of 4D CT Data Generation Program based on CAD Models through the Convergence of Biomedical Engineering (CAD 모델 기반의 4D CT 데이터 제작 의용공학 융합 프로그램 개발)

  • Seo, Jeong Min;Han, Min Cheol;Lee, Hyun Su;Lee, Se Hyung;Kim, Chan Hyeong
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.4
    • /
    • pp.131-137
    • /
    • 2017
  • In the present study, we developed the 4D CT data generation program from CAD-based models. To evaluate the developed program, a CAD-based respiratory motion phantom was designed using CAD software, and converted into 4D CT dataset, which include 10 phases of 3D CTs. The generated 4D CT dataset was evaluated its effectiveness and accuracy through the implementation in radiation therapy planning system (RTPS). Consequently, the results show that the generated 4D CT dataset can be successfully implemented in RTPS, and targets in all phases of 4D CT dataset were moved well according to the user parameters (10 mm) with its stationarily volume (8.8 cc). The developed program, unlike real 4D CT scanner, due to the its ability to make a gold-standard dataset without any artifacts constructed by modality's movements, we believe that this program will be used when the motion effect is important, such as 4D radiation treatment planning and 4D radiation imaging.

M-mode Ultrasound Assessment of Diaphragmatic Excursions in Chronic Obstructive Pulmonary Disease : Relation to Pulmonary Function Test and Mouth Pressure (만성폐쇄성 폐질환 환자에서 M-mode 초음파로 측정한 횡격막 운동)

  • Lim, Sung-Chul;Jang, Il-Gweon;Park, Hyeong-Kwan;Hwang, Jun-Hwa;Kang, Yu-Ho;Kim, Young-Chul;Park, Kyung-Ok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.4
    • /
    • pp.736-745
    • /
    • 1998
  • Background: Respiratory muscle interaction is further profoundly affected by a number of pathologic conditions. Hyperinflation may be particularly severe in chronic obstructive pulmonary disease(COPD) patients, in whom the functional residual capacity(FRC) often exceeds predicted total lung capacity(TLC). Hyperinflation reduces the diaphragmatic effectiveness as a pressure generator and reduces diaphragmatic contribution to chest wall motion. Ultrasonography has recently been shown to be a sensitive and reproducible method of assessing diaphragmatic excursion. This study was performed to evaluate how differences of diaphragmatic excursion measured by ultrasonography associate with normal subjects and COPD patients. Methods: We measured diaphragmatic excursions with ultrasonography on 28 healthy subjects(l6 medical students, 12 age-matched control) and 17 COPD patients. Ultrasonographic measurements were performed during tidal breathing and maximal respiratory efforts approximating vital capacity breathing using Aloka KEC-620 with 3.5 MHz transducer. Measurements were taken in the supine posture. The ultrasonographic probe was positioned transversely in the midclavicular line below the right subcostal margin. After detecting the right hemidiaphragm in the B-mode the ultrasound beam was then positioned so that it was approximately parallel to the movement of middle or posterior third of right diaphragm. Recordings in the M-mode at this position were made throughout the test. Measurements of diaphragmatic excursion on M-mode tracing were calculated by the average gap in 3 times-respiration cycle. Pulmonary function test(SensorMedics 2800), maximal inspiratory(PImax) and expiratory mouth pressure(PEmax, Vitalopower KH-101, Chest) were measured in the seated posture. Results: During the tidal breathing, diaphragmatic excursions were recorded $1.5{\pm}0.5cm$, $1.7{\pm}0.5cm$ and $1.5{\pm}0.6cm$ in medical students, age-matched control group and COPD patients, respectively. Diaphragm excursions during maximal respiratory efforts were significantly decreased in COPD patients ($3.7{\pm}1.3cm$) when compared with medical students, age-matched control group($6.7{\pm}1.3cm$, $5.8{\pm}1.2cm$, p< 0.05}. During maximal respiratory efforts in control subjects, diaphragm excursions were correlated with $FEV_1$, FEVl/FVC, PEF, PIF, and height. In COPD patients, diaphragm excursions during maximal respiratory efforts were correlated with PEmax(maximal expiratory pressure), age, and %FVC. In multiple regression analysis, the combination of PEmax and age was an independent marker of diaphragm excursions during maximal respiratory efforts with COPD patients. Conclusion: COPD subjects had smaller diaphragmatic excursions during maximal respiratory efforts than control subjects. During maximal respiratory efforts in COPD patients, diaphragm excursions were well correlated with PEmax. These results suggest that diaphragm excursions during maximal respiratory efforts with COPD patients may be valuable at predicting the pulmonary function.

  • PDF

Development of Artificial Pulmonary Nodule for Evaluation of Motion on Diagnostic Imaging and Radiotherapy (움직임 기반 진단 및 치료 평가를 위한 인공폐결절 개발)

  • Woo, Sang-Keun;Park, Nohwon;Park, Seungwoo;Yu, Jung Woo;Han, Suchul;Lee, Seungjun;Kim, Kyeong Min;Kang, Joo Hyun;Ji, Young Hoon;Eom, Kidong
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.76-83
    • /
    • 2013
  • Previous studies about effect of respiratory motion on diagnostic imaging and radiation therapy have been performed by monitoring external motions but these can not reflect internal organ motion well. The aim of this study was to develope the artificial pulmonary nodule able to perform non-invasive implantation to dogs in the thorax and to evaluate applicability of the model to respiratory motion studies on PET image acquisition and radiation delivery by phantom studies. Artificial pulmonary nodule was developed on the basis of 8 Fr disposable gastric feeding tube. Four anesthetized dogs underwent implantation of the models via trachea and implanted locations of the models were confirmed by fluoroscopic images. Artificial pulmonary nodule models for PET injected $^{18}F$-FDG and mounted on the respiratory motion phantom. PET images of those acquired under static, 10-rpm- and 15-rpm-longitudinal round motion status. Artificial pulmonary nodule models for radiation delivery inserted glass dosemeter and mounted on the respiratory motion phantom. Radiation delivery was performed at 1 Gy under static, 10-rpm- and 15-rpm-longitudinal round motion status. Fluoroscpic images showed that all models implanted in the proximal caudal bronchiole and location of models changed as respiratory cycle. Artificial pulmonary nodule model showed motion artifact as respiratory motion on PET images. SNR of respiratory gated images was 7.21. which was decreased when compared with that of reference images 10.15. However, counts of respiratory images on profiles showed similar pattern with those of reference images when compared with those of static images, and it is assured that reconstruction of images using by respiratory gating improved image quality. Delivery dose to glass dosemeter inserted in the models were same under static and 10-rpm-longitudinal motion status with 0.91 Gy, but dose delivered under 15-rpm-longitudinal motion status was decreased with 0.90 Gy. Mild decrease of delivered radiation dose confirmed by electrometer. The model implanted in the proximal caudal bronchiole with high feasibility and reflected pulmonary internal motion on fluoroscopic images. Motion artifact could show on PET images and respiratory motion resulted in mild blurring during radiation delivery. So, the artificial pulmonary nodule model will be useful tools for study about evaluation of motion on diagnostic imaging and radiation therapy using laboratory animals.

The Effect of Inferior Turbinectomy on Heat/Humidity Transfer Ability of the Nose (하비갑개수술이 비강의 열/습도 전달 특성에 미친 영향)

  • Chung, Kang-Soo;Chang, Ji-Won;Kim, Sung-Kyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.419-424
    • /
    • 2012
  • In addition to respiration, the nose performs three other major physiological functions-air-conditioning, filtering, and smelling. On the basis of our experience in experimental investigations of nasal airflows in normal and abnormal nasal cavity models, airflows in the normal model and three artificially deformed models, which simulate the results of surgical treatments (inferior turbinectomy), are investigated by PIV and CFD. The left cavities of all three models are normal, and the right cavities are modified as follows: (1) excision of the head of the inferior turbinate, (2) resection of the lower fifth of the inferior turbinate, and (3) resection of almost the entire inferior turbinate. The use of high-resolution CT data and careful surface rendering of three-dimensional computer models with the help of an ENT doctor provide more sophisticated nasal cavity models. Nasal airflows for both normal and deformed cases are also compared.

A Realistic Human Exposure Assessment of Indoor Radon released from Groundwater (지하수로부터 방출된 라돈에 의한 현실적인 체내축적량 평가)

  • Yu, Dong-Han;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.2
    • /
    • pp.121-126
    • /
    • 2002
  • The work presents a realistic human exposure assessment of indoor radon released from groundwater in a house. At first, a two-compartment model is developed to describe the generation and transfer of radon in indoor air from groundwater. The model is used to estimate radon concentrations profile of indoor air in a house us]ng by showering, washing clothes, and flushing toilets. Then, the study performs an uncertainty analysis of model input parameters to quantify the uncertainty in radon concentration profile. In order to estimate a daily internal dose of a specific tissue group in an adult through the inhalation of such indoor radon, 3 PBPK(Physiologically-Based Pharmaco-Kinetic) model is developed. Combining indoor radon profile and PBPK model is used to a realistic human assessment for such exposure. The results obtained from this study would be used to the evaluation of human risk by inhalation associated with the indoor radon released from groundwater.

A Study on the Parameters of WASP5 Model in Daechung Reservoir (대청호에서 WASP5 모델 매개변수에 관한 연구)

  • Han, Woon Woo;Kim, Kyu-Hyung;Ahn, Tae-Bong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.3
    • /
    • pp.69-77
    • /
    • 2003
  • This study was carried out to evaluate the WASP5 model parameters and to analyze the sensitivity of parameters in Daechung Reservoir. The values predicted by the model and tendency were very similar to the observed data at Daejeon intake, so it is possible to predict water quality of the Daejeon intake region in the future. Results from the sensitivity analysis showed that Chlorophyll-a was sensitive to variations in saturated growth rate of phytoplankton, endogenous respiration rate of phytoplankton, extinction coefficient and temperature. T-N was sensitive to mineralization rate of dissolved organic nitrogen and temperature. T-P was affected by T-P load, temperature, extinction coefficient, mineralization rate of dissolved organic phosphorus and saturated growth rate of phytoplankton. BOD was influenced by deoxygenation rate and temperature, and DO was influenced by temperature. Adequate input data was applied and assessed through the model sensitivity analysis. So it is possible to distinguish the input data which need careful attention when it has application to model.

  • PDF

Aquaporin in bleomycin induced lung injury (급성 폐손상 동물모델에서 aquaporin 수분통로의 발현)

  • Jang, An-Soo;Park, Jong-Sook;Lee, June-Hyuk;Park, Sung-Woo;Kim, Do-Jin;Uh, Soo-Taek;Kim, Yong-Hoon;Park, Choon-Sik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.3
    • /
    • pp.330-336
    • /
    • 2006
  • Background : Aquaporins (AQPs) may play a role in the pathogenesis of pulmonary inflammation and edema. This study investigated the role ofAQPs in acute lung injury following bleomycin inhalation in rats. Methods : Sprague-Dawley rats were treated via inhalation with 10 U/kg bleomycin hydrochloride dissolved in 5 ml of normal saline. The control rats were treated with 5 ml normal saline. The animals (n = 6-8 rats per group) were sacrificed at 4, 7, and 14 d. The changes in AQP1, AQP4, and AQP5 expression levels over time were analyzed by Western blotting. The nitrate and nitrite concentrations in the bronchoalveolar lavage fluid (BALF) were measured using a modified Griess reaction. ELISA was used to check cytokines. Results : The respiration rates were significantly higher 4 and 7 days after the bleomycin treatment compared with those of the control rats. The tidal volume was lower in rats at 4 days after the bleomycin treatment, and the wet/dry weights of the lung were significantly higher than those of the control group. The nitrite and nitrate concentrations in the BALF from the rats at 4 days after exposure to bleomycin were greater than those from the saline-treated rats. Immunoblotting studies demonstrated that the AQP1 and AQP4 expression levels were lower in the rats at 4 days. However, the AQP4 expression level was higher at 7 days. The AQP5 expression level increased at 4, 7 and 14 days after the bleomycin treatment. Conclusion : This study demonstrates that AQPs are expressed differently in bleomycin-induced pulmonary edema.

Interpretation of Uranium Bioassay Results with the ICRP Respiratory Track and Biokinetic Model (ICRP 호흡기 및 생체역동학적 모델을 이용한 우라늄 생물분석 결과의 해석)

  • Kim, H.K.;Lee, J.K.
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.1
    • /
    • pp.43-50
    • /
    • 2003
  • This study describes a practical method for interpretation of bioassay results of inhaled uranium to assess the committed effective doses both for chronic and acute intake situations. Organs in the body were represented by a series of mathematical compartments for analysis of the behavior of uranium in the body according to the gastrointestinal track model, respiratory track model and biokinetic model recommended by the ICRP. An analytical solutions of the system of balance equations among the compartments were obtained using the Birchall's algorithm, and the urinary excretion function and the lung retention function of uranium were obtained. An initial or total intakes by intake modes were calculated by applying excretion and retention functions to the urinary uranium concentration and the lung burden measured with a lung counter. The dose coefficients given in ICRP 78 are used to estimate the committed effective doses from the calculated intakes.

A Canine Model of Tracheal Stenosis Using Nd-YAG Laser (Nd-YAG laser를 이용한 기관협착 동물모델의 개발)

  • Kim, Jhin-Gook;Suh, Gee-Young;Chung, Man-Pyo;Kwon, O-Jung;Suh, Soo-Won;Kim, Ho-Joong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.1
    • /
    • pp.54-61
    • /
    • 2002
  • Background: Tracheal stenosis is an urgent but uncommon disease. Therefore, primary care clinicians have limited clinical experience. Animal models of a tracheal stenosis can be used conveniently for the learning, teaching, and developing new diagnostic and therapeutic modalities for tracheal stenosis. Recently, a canine model of a tracheal stenosis was developed using a Nd-YAG laser. To describe the methods and results of developed animal model, we performed this study. Methods : Six Mongrel dogs were generally anesthetized and the anterior 180 degree of tracheal cartilage of the animal was photo-coagulated using a Nd-YAG laser. The animals were bronchoscopically evaluated every week for 4 weeks and a pathologic evaluation was also made. Results : Two weeks after the laser coagulation, the trachea began to stenose and the stenosis progressed through 4 weeks. All animals suffered from shortness of breath, wheezing, and weight loss in the 3 weeks after the laser treatment, and two died of respiratory failure just before the fourth week. The gross pathologic findings showed the loss of cartilage and a dense fibrosis, which resulted in a fibrous stricture of the trachea. Microscopy also showed that the fibrous granulation tissue replaced destroyed cartilage. Conclusion : The canine model can assist in the understanding and development of new diagnostic and therapeutic modalities for tracheal stenosis.

Psychophysiologic Response in Patients with Panic Disorder (공황장애환자의 정신생리적 반응)

  • Chung, Sang-Keun;Cho, Kwang-Hyun;Jung, Ae-Ja;Park, Tae-Won;Hwang, Ik-Keun
    • Sleep Medicine and Psychophysiology
    • /
    • v.8 no.1
    • /
    • pp.52-58
    • /
    • 2001
  • Objectives: An Increased level of psychophysiologic arousal and diminished physiologic flexibility would be observed in patients with panic disorder compared with a normal control group. We investigated the differences of psychophysiologic response between patients with panic disorder and normal control to examine this hypothesis. Methods: Ten Korean patients with panic disorder who met the diagnostic criteria of DSM-IV were compared with 10 normal healthy subjects. In psychological assessment, levels of anxiety and depression were evaluated by State-Trait Anxiety Inventory, Beck's Depression Inventory and Hamilton Rating Scale For Anxiety and Depression. Heart rate, respiration rate, electrodermal response, and electromyographic activity were measured by biofeedback system (J & J I-330 model) to determine psychophysiologic responses on autonomic nervous system. Stressful tasks included mental arithmetic, video game, hyperventilation, and talking about a stressful event. Psychophysiologic responses were measured according to the following procedures : baseline(3 min)-mental arithmetic (3 min)-rest (3 min)-video game (3 min)-rest (3 min)-hyperventilation (3 min)-rest (3 min)-talking about a stressful event (3 min). Results: The baseline level of anxiety and depression, electrodermal response (p=.017), electromyographic activity (p=.047) and heart rate (p=.049) of patients with panic disorder were significantly higher than those of the normal subject group. In electrodermal response, patient group had significantly higher startle response than the control group during hyperventilation (p=.001). Startle and recovery responses of heart rate in the patient group were significantly lower than responses in the control group during mental arithmetic (p=.007, p=.002). In electrodermal response of the patient group, startle response was significantly higher than recovery response during mental arithmetic (p=.000) and video game task (p=.021). Recovery response was significantly higher than startle response in respiratory response during hyperventilation. Conclusion: The results showed that patients with panic disorder had higher autonomic arousal than the control group, but the physiologic flexibility was variable. We suggest that it is helpful for treatment of panic disorder to decrease the level of autonomic arousal and to recover the physiologic flexibility in certain stressful event.

  • PDF