• Title/Summary/Keyword: 호흡치료

Search Result 1,279, Processing Time 0.027 seconds

Discrepancies between Calculated and Delivered Dose Distributions of Respiratory Gated IMRT Fields according to the Target Motion Ranges for Lung and Liver Cancer Patients (호흡연동방사선치료시 폐암과 간암환자의 병소 움직임 크기에 따른 선량분포 차이 분석)

  • Kim, Youngkuk;Lim, Sangwook;Choi, Ji Hoon;Ma, Sun Young;Jeung, Tae Sig;Ro, Tae Ik
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.242-247
    • /
    • 2014
  • To see the discrepancies between the calculated and the delivered dose distribution of IMRT fields for respiratory-induced moving target according to the motion ranges. Four IMRT plans in which there are five fields, for lung and liver patients were selected. The gantry angles were set to $0^{\circ}$ for every field and recalculated using TPS (Eclipse Ver 8.1, Varian Medical Systems, Inc., USA). The ion-chamber array detector (MatriXX, IBA Dosimetry, Germany) was placed on the respiratory simulating platform and made it to move with ranges of 1, 2, and 3 cm, respectively. The IMRT fields were delivered to the detector with 30~70% gating windows. The comparison was performed by gamma index with tolerance of 3 mm and 3%. The average pass rate was 98.63% when there's no motion. When 1.0, 2.0, 3.0 cm motion ranges were simulated, the average pass rate were 98.59%, 97.82%, and 95.84%, respectively. Therefore, ITV margin should be increased or gating windows should be decreased for targets with large motion ranges.

Effects of CP AP Therapy on Systemic Blood Pressure, Cardiac Rhythm and Catecholamines Concentration in Patients with Obstructive Sleep Apnea (폐쇄성 수면 무호흡에서 CPAP 치료가 전신성 혈압, 심조율 및 catecholamines 농도에 미치는 영향)

  • Kang, Ji-Ho;Lee, Sang-Haak;Choi, Young-Mee;Kwon, Soon-Seog;Kim, Young-Kyoon;Kim, Kwan-Hyoung;Song, Jeong-Sup;Park, Sung-Hak;Moon, Hwa-Sik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.6
    • /
    • pp.715-723
    • /
    • 2000
  • Background : Obstructive sleep apnea syndrome (OSAS) affects systemic blood pressure and cardiac function. The development of cardiovascular dysfunction including the changes of systemic blood pressure and cardiac rhythm, suggests that recurrent hypoxia and arousals from sleep may increase a sympathetic nervous system activity. Continuous positive airway pressure (CPAP) therapy has been found to be an effective treatment of OSAS. However, only a few studies have investigated the cardiovascular and sympathetic effects of CPAP therapy. We evaluated influences of nasal CPAP therapy on the cardiovascular system and the sympathetic activity in patients with OSAS. Methods : Thirteen patients with OSAS underwent CPAP therapy and were monitored using polysomnography, blood pressure, heart rate, presence of arrhythmia and the concentration of plasma catecholamines, before and with CPAP therapy. Results: The apnea-hypopnea index (AHI) was significant1y decreased (p<0.01) and the lowest arterial oxygen saturation level was elevated significantly after applying CPAP (p<0.01). Systolic blood pressure tended to decrease after CPAP but without statistical significance. Heart rates during sleep were not significantly different after CPAP. However, the frequency and number of types of arrhythmia decreased and sinus bradytachyarrhythmia disappeared after CPAP. Although there was no significant difference in the level of plasma epinephrine concentration, plasma norepinephrine concentration significantly decreased after CPAP (p<0.05). Conclusion : CPAP therapy decreased the apnea-hypopnea index, hypoxic episodes and plasma norepinephrine concentration. In addition, it decreased the incidence of arrhythmia and tended to decrease the systemic blood pressure. These results indicate that CPAP may play an important role in the prevention of cardiovascular complications in patients with OSAS.

  • PDF

A study to 3D dose measurement and evaluation for Respiratory Motion in Lung Cancer Stereotactic Body Radiotherapy Treatment (폐암의 정위적체부방사선치료시 호흡 움직임에 따른 3D 선량 측정평가)

  • Choi, Byeong-Geol;Choi, Chang-Heon;Yun, Il-Gyu;Yang, Jin-Seong;Lee, Dong-Myeong;Park, Ju-Mi
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.59-67
    • /
    • 2014
  • Purpose : This study aims to evaluate 3D dosimetric impact for MIP image and each phase image in stereotactic body radiotherapy (SBRT) for lung cancer using volumetric modulated arc therapy (VMAT). Materials and Methods : For each of 5 patients with non-small-cell pulmonary tumors, a respiration-correlated four-dimensional computed tomography (4DCT) study was performed. We obtain ten 3D CT images corresponding to phases of a breathing cycle. Treatment plans were generated using MIP CT image and each phases 3D CT. We performed the dose verification of the TPS with use of the Ion chamber and COMPASS. The dose distribution that were 3D reconstructed using MIP CT image compared with dose distribution on the corresponding phase of the 4D CT data. Results : Gamma evaluation was performed to evaluate the accuracy of dose delivery for MIP CT data and 4D CT data of 5 patients. The average percentage of points passing the gamma criteria of 2 mm/2% about 99%. The average Homogeneity Index difference between MIP and each 3D data of patient dose was 0.03~0.04. The average difference between PTV maximum dose was 3.30 cGy, The average different Spinal Coad dose was 3.30 cGy, The average of difference with $V_{20}$, $V_{10}$, $V_5$ of Lung was -0.04%~2.32%. The average Homogeneity Index difference between MIP and each phase 3d data of all patient was -0.03~0.03. The average PTV maximum dose difference was minimum for 10% phase and maximum for 70% phase. The average Spain cord maximum dose difference was minimum for 0% phase and maximum for 50% phase. The average difference of $V_{20}$, $V_{10}$, $V_5$ of Lung show bo certain trend. Conclusion : There is no tendency of dose difference between MIP with 3D CT data of each phase. But there are appreciable difference for specific phase. It is need to study about patient group which has similar tumor location and breathing motion. Then we compare with dose distribution for each phase 3D image data or MIP image data. we will determine appropriate image data for treatment plan.

Development of Abdominal Compression Belt and Evaluation of the Efficiency for the Reduction of Respiratory Motion in SBRT (체부 정위방사선치료 시 호흡운동 감소를 위한 복부 압박기구 개발 및 유용성 평가)

  • Hwang, Seon-Bung;Kim, Il-Hwan;Kim, Woong;Im, Hyeong-Seo;Gang, Jin-Mook;Jeong, Seong-Min;Kim, Gi-Hwan;Lee, Ah-Ram;Cho, Yu-Ra
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.1
    • /
    • pp.13-19
    • /
    • 2011
  • Purpose: It's essential to minimize the tumor motion and identify the exact location of the lesions to achieve the improvement in radiation therapy efficiency during SBRT. In this study, we made the established compression belt to reduce respiratory motion and evaluated the usefulness of clinical application in SBRT. Materials and Methods: We analyzed the merits and demerits of the established compression belt to reduce the respiratory motion and improved the reproducibility and precision in use. To evaluate the usefulness of improved compression belt for respiratory motion reduction in SBRT, firstly, we reviewed the spiral CT images acquired in inspiration and expiration states of 8 lung cancer cases, respectively, and analyzed the three dimensional tumor motion related to respiration. To evaluate isodose distribution, secondly, we also made the special phantom using EBT2 film (Gafchronic, ISP, USA) and we prepared the robot (Cartesian Robot-2 Axis, FARARCM4H, Samsung Mechatronics, Korea) to reproduce three dimensional tumor motion. And analysis was made for isodose curves and two dimensional isodose profiles with reproducibility of respiratory motion on the basis of CT images. Results: A respiratory motion reduction compression belt (Velcro type) that has convenient use and good reproducibility was developed. The moving differences of three dimensional tumor motion of lung cancer cases analyzed by CT images were mean 3.2 mm, 4.3 mm and 13 mm each in LR, AP and CC directions. The result of characteristic change in dose distribution using the phantom and rectangular coordinates robot showed that the distortion of isodose has great differences, mean length was 4.2 mm; the differences were 8.0% and 16.8% each for cranio-caudal and 8.1% and 10.9% each for left-right directions in underdose below the prescribed dose. Conclusion: In this study, we could develop the convenient and efficient compression belt that can make the organs' motion minimize. With this compression belt, we confirmed that underdose due to respiration can be coped with when CTV-PTV margins of mean 6 mm would be used. And we conclude that the respiratory motion reduction compression belt we developed can be used for clinical effective aids along with the gating system.

  • PDF

Development of Error Analysis Program for Phase-based Respiratory Gating Radiation Therapy (위상기반 호흡연동 방사선치료 시 오차 분석 프로그램 개발)

  • Song, Ju-Young;Nah, Byung-Sik;Chung, Woong-Ki;Ahn, Sung-Ja;Nam, Taek-Keun;Yoon, Mi-Sun
    • Progress in Medical Physics
    • /
    • v.17 no.3
    • /
    • pp.136-143
    • /
    • 2006
  • The respiratory gating radiation therapy which Irradiates only in the stable respiratory period with analyzing the periodic motion of a reflective marker on the patient's abdomen has been applied to the precise radiation treatment in order to minimize the effect of organ motion induced by the respiration. This respiratory gating system establishes irradiation region using the amplitude-based or phase-based method. Although phase-based method Is preferred because of the stability in the real treatment conditions, it has some limits to explain the exact correlation between the marker motion and organ motion. Even when the variation of amplitude which can introduce target motion considered as an error is produced, the phase-based method has the possibility to irradiate including the error positions. In this study, the error analysis program was developed for the verification of the tumor position's variation correlated with the variation of marker's amplitude which can be occurred during a phase-based respiratory sating treatment. The analysis program was tested with a virtual treatment record file and with a record file using moving phantom which were modified considering the irregular amplitude's variation simulating the real clinical situations. In both cases, accurate discrimination of error points and error calculation were produced. When the treatment record files of a real patient were analyzed with the program, the accurate recognition and calculation of the error points were also verified. The analysis program developed in this study will be applied as a useful tool for the analysis of errors due to the irregular variation of patients' respiration during the phase-base respiratory gating radiation treatment.

  • PDF

Reproducibility evaluation of the use of pressure conserving abdominal compressor in lung and liver volumetric modulated arc therapy (흉복부 방사선 치료 시 압력 기반 복부압박장치 적용에 따른 치료 간 재현성 평가)

  • Park, ga yeon;Kim, joo ho;Shin, hyun kyung;Kim, min soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.71-78
    • /
    • 2021
  • Purpose: To evaluate the inter-fractional position and respiratory reproducibility of lung and liver tumors using pressure conserving type(P-type) abdominal compressor in volumetric modulated arc therapy(VMAT). Materials and methods: Six lung cancer patients and three liver cancer patients who underwent VMAT using a P-type abdominal compressor were included in this study. Cone-beam computed tomography(CBCT) images were acquired before each treatment and compared with planning CT images to evaluate the inter-fractional position reproducibility. The position variation was defined as the difference of position shift values between target matching and bone matching. 4-dimensional cone-beam computed tomography(4D CBCT) images were acquired weekly before treatment and compared with planning 4DCT images to evaluate the inter-fractional respiratory reproducibility. The respiratory variation was calculated by the magnitude of excursions by breathing. Results: The mean ± standard deviation(SD) of overall position variation values, 3D vector in the three translational directions were 1.1 ± 1.4 mm and 4.5 ± 2.8 mm for the lung and liver, respectively. The mean ± SD of respiratory variation values were 0.7 ± 3.4 mm (p = 0.195) in the lung and 3.6 ± 2.6 mm (p < 0.05) in the liver. Conclusion: The use of P-type compressor in lung and liver VMAT was effective for stable control of inter-fractional position and respiratory variation by reproduction of abdominal compression. Appropriate PTV margin must be considered in treatment planning, and image guidance before each treatment are required in order to obtain more stable reproducibility

Respiratory Failure of Acute Organophosphate Insecticide Intoxication (유기인제 중독에 의한 호흡부전)

  • Shin, Kyeong-Cheol;Lee, Kwan-Ho;Park, Hye-Jung;Shin, Chang-Jin;Lee, Choong-Ki;Chung, Jin-Hong;Lee, Hyun-Woo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.3
    • /
    • pp.363-371
    • /
    • 1999
  • Background: Because of the widespread use and availability of agricultural insecticides, acute organophosphate poisoning as a suicide or an accident is becoming the most common type of poisoning and serious problem in Korea. The mortality of organophosphate poisoning varied from 10 to 86 percent. The cause of death was thought to be a combination of excessive bronchial secretion, bronchospasm, respiratory muscle paralysis and depression of respiratory center, summarily respiratory failure. We evaluated the respiratory complications in patients with acute organophosphate intoxication to determine the predisposing, factors to respiratory failure and to reduce the incidence of respiratory failure or mortality. Method: We conducted a retrospective study of 111 patients with the discharge diagnosis of organophosphate poisoning who were hospitalized at Yenugnam University Hospital during the 5 years. The diagnosis of organophosphate poisoning has based on the followings (1) a history of exposure to an organophosphate compounds. (2) the characteristic clinical signs and symptoms. (3) decrease in the cholinesterase activity in the serum. Results: Respiratory failure developed in 31(28%) of 111 patients with acute organophosphate poisoning. All cases of respiratory failure developed within 96 hours after poisoning and within 24 hours in 23 patients. The 80 patients who did not develop respiratory failure survived. In 31 patients with respiratory failure, 15(44%) patients were dead. The patients with respiratory failure had more severe poisoning, that is, the lower level of serum cholinesterase activity on arrival, the higher mean dosage of atropine administered within first 24 hours. In 16 patients with pneumonia, 14 patients developed respiratory failure. In 5 patients with cardiovascular collapse, 2 patients developed respiratory failure. There was no correlation to between age, sex, the use of pralidoxime and respiratory failure. The serum cholinesterase level in survivors at time of respiratory failure and weaning was $66.05{\pm}85.48U/L$, $441{\pm}167.49U/L$, respectively. Conclusion: All the respiratory failure complications of acute organophosphate poisoning occurred during the first 96 hours after exposure. The severity of poisoning and pneumonia were the predisposing factors to respiratory failure. Aggressive treatment and prevention of the above factors will reduce the incidence of respiratory failure.

  • PDF

The Effect of Breathing Biofeedback on Breathing Reproducibility and Patient's Dose in Respiration-gated Radiotherapy (호흡연동 방사선 치료에서 호흡생체자기제어 방식이 호흡 재현성 및 선량에 미치는 영향 평가)

  • An, Sohyun;Yeo, Inhwan;Jung, Jaewon;Suh, Hyunsuk;Lee, Kyung Ja;Choi, Jinho;Lee, Kyu Chan;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.24 no.3
    • /
    • pp.135-139
    • /
    • 2013
  • We evaluated the effect of two kinds of breathing biofeedback technique such as audio-instruction and audio-visual biofeedback on breathing reproducibility and the CTV coverage during repeated treatment regimes in respiration-gated radiotherapy. In this study, the breathing data of nineteen lung cancer patients acquired from Medical College of Virginia (MCV) during five weeks were used. The dose evaluation algorithm was programmed in MATLAB. In the result, the CTV coverage was decreased as 30.0% due to the breathing irreproducibility for free-breathing. For audio-visual biofeedback, the CTV coverage was improved as 20.0% because patients can learn how control their breathing stably. And the audio-instruction was effective to preserve the breathing reproducibility.

Evaluation of the Accuracy for Respiratory-gated RapidArc (RapidArc를 이용한 호흡연동 회전세기조절방사선치료 할 때 전달선량의 정확성 평가)

  • Sung, Jiwon;Yoon, Myonggeun;Chung, Weon Kuu;Bae, Sun Hyun;Shin, Dong Oh;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.127-132
    • /
    • 2013
  • The position of the internal organs can change continually and periodically inside the body due to the respiration. To reduce the respiration induced uncertainty of dose localization, one can use a respiratory gated radiotherapy where a radiation beam is exposed during the specific time of period. The main disadvantage of this method is that it usually requests a long treatment time, the massive effort during the treatment and the limitation of the patient selection. In this sense, the combination of the real-time position management (RPM) system and the volumetric intensity modulated radiotherapy (RapidArc) is promising since it provides a short treatment time compared with the conventional respiratory gated treatments. In this study, we evaluated the accuracy of the respiratory gated RapidArc treatment. Total sic patient cases were used for this study and each case was planned by RapidArc technique using varian ECLIPSE v8.6 planning machine. For the Quality Assurance (QA), a MatriXX detector and I'mRT software were used. The results show that more than 97% of area gives the gamma value less than one with 3% dose and 3 mm distance to agreement condition, which indicates the measured dose is well matched with the treatment plan's dose distribution for the gated RapidArc treatment cases.

Dosimetric Evaluation of Amplitude-based Respiratory Gating for Delivery of Volumetric Modulated Arc Therapy (진폭 기반 호흡연동 체적변조회전방사선치료의 선량학적 평가)

  • Lee, Chang Yeol;Kim, Woo Chul;Kim, Hun Jeong;Park, Jeong Hoon;Min, Chul Kee;Shin, Dong Oh;Choi, Sang Hyoun;Park, Seungwoo;Huh, Hyun Do
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.127-136
    • /
    • 2015
  • The purpose of this study is to perform a dosimetric evaluation of amplitude-based respiratory gating for the delivery of volumetric modulated arc therapy (VMAT). We selected two types of breathing patterns, subjectively among patients with respiratory-gated treatment log files. For patients that showed consistent breathing patterns (CBP) relative to the 4D CT respiration patterns, the variability of the breath-holding position during treatment was observed within the thresholds. However, patients with inconsistent breathing patterns (IBP) show differences relative to those with CBP. The relative isodose distribution was evaluated using an EBT3 film by comparing gated delivery to static delivery, and an absolute dose measurement was performed with a $0.6cm^3$ Farmer-type ion chamber. The passing rate percentages under the 3%/3 mm gamma analysis for Patients 1, 2 and 3 were respectively 93.18%, 91.16%, and 95.46% for CBP, and 66.77%, 48.79%, and 40.36% for IBP. Under the more stringent criteria of 2%/2 mm, passing rates for Patients 1, 2 and 3 were respectively 73.05%, 67.14%, and 86.85% for CBP, and 46.53%, 32.73%, and 36.51% for IBP. The ion chamber measurements were within 3.5%, on average, of those calculated by the TPS and within 2.0%, on average, when compared to the static-point dose measurements for all cases of CBP. Inconsistent breathing patterns between 4D CT simulation and treatment may cause considerable dosimetric differences. Therefore, patient training is important to maintain consistent breathing amplitude during CT scan acquisition and treatment delivery.