• 제목/요약/키워드: 형태 패턴 인식

검색결과 280건 처리시간 0.039초

그래프간 유사도 측정에 의한 음악 기호 인식 (A Musical Symbol recognition By Using Graphical Distance Measures)

  • 전정우;장경식;허경용;김재희
    • 한국음향학회지
    • /
    • 제15권1호
    • /
    • pp.54-60
    • /
    • 1996
  • 패턴인식이나 영상이해의 영역에서는 같은 물체라도 잡음이나 왜곡에 의하여 모양이 훼손되어 다른 물체로 인식될 수 있다. 따라서 물체 인식에서는 두 물체가 완전히 동일한지 여부를 판정하는 것보다는 두 물체가 서로 어느 정도 유사한가를 판정하는 것이 중요한 경우가 많다. 이 논문에서는 훼손된 기호의 인식을 위하여 기호를 표현하는 두 그래프 표현간의 유사도 측정을 이용한 기호 인식 방법을 제안하였다. 제안한 기호 인식 방법은 런 그래프(run graph)를 이용하여 인식 대상 기호를 노드(node)와 에지(edge)로 구성되는 그래프 형태로 표현하고 임베딩 변환(embedding transform)을 포함한 생성 규칙을 사용하여 입력 그래프를 참조 모델 그래프와 유사한 형태로 변형시킨다. 이러한 과정에서 변형된 최종 그래프와 모델 그래프간의 구조적 유사성과 변형시 사용된 생성 규칙의 수를 이용하여 그래프간 유사도를 측정함으로써 기호를 인식하였으며 이의 응용 분야로서 악보에서 비음표 기호 인식에 사용하였다. 이 결과 96%의 인식률을 얻었으며 기호가 심하게 훼손되지 않은 경우에는 거의 인식에 성공하였다.

  • PDF

HLF(Haar-like Feature)를 이용한 실시간 손 포즈 인식 (Real-time Hand Pose Recognition Using HLF)

  • 김장운;김송국;홍석주;장한별;이칠우
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.897-902
    • /
    • 2007
  • 인간과 컴퓨터간의 전통적인 인터페이스는 인간이 요구하는 다양한 인터페이스를 제공하지 못한다는 점에서 점차 사용하기 불편하게 되었고 이는 새로운 형태의 인터페이스에 대한 요구로 이어지게 되었다. 본 논문에서는 이러한 추세에 맞추어 카메라를 통해 인간의 손 제스처를 인식하는 새로운 인터페이스를 연구하였다. 손은 자유도가 높고 3차원의 view direction에 의해 형상이 매우 심하게 변한다. 따라서 윤곽선 기반방법과 같은 2차원으로 투영된 영상에서 contour나 edge의 정보로 손 제스처를 인식하는 데는 한계가 있다. 그러나 모델기반 방법은 3차원 정보를 이용하기 때문에 손 제스처를 인식하는데 좋으나 계산량이 많아 실시간으로 처리하기가 쉽지 않다. 이러한 문제점을 해결하기 위해 손 형상에 대한 대규모 데이터베이스를 구성하고 정규화된 공간에서 Feature 간의 연관성을 파악하여 훈련 데이터 모델을 구성하여 비교함으로써 실시간으로 손 포즈를 구별할 수 있다. 이러한 통계적 학습 기반의 알고리즘은 다양한 데이터와 좋은 feature의 검출이 최적의 성능을 구현하는 것과 연관된다. 따라서 배경으로부터 노이즈를 최대한 줄이기 위해 피부의 색상 정보를 이용하여 손 후보 영역을 검출하고 검출된 후보 영역으로부터 HLF(Haar-like Feature)를 이용하여 손 영역을 검출한다. 검출된 손 영역으로부터 패턴 분류 과정을 거쳐 손 포즈를 인식 하게 된다. 패턴 분류 과정은 HLF를 이용하여 손 포즈를 인식하게 되는데 미리 학습된 각 포즈에 대한 HLF를 이용하여 손 포즈를 인식하게 된다. HLF는 Violar가 얼굴 검출에 적용한 것으로 얼굴 검출에 좋은 결과를 보여 주었으며, 이는 적분 이미지로부터 추출한 HLF를 이용한 Adaboost 학습 알고리즘을 사용하였다. 본 논문에서는 피부색의 색상 정보를 이용 배경과 손 영상을 최대한 분리하여 배경의 대부분이 Adaboost-Haar Classifier의 첫 번째 스테이지에서 제거되는 방법을 이용하여 그 성능을 더 향상 시켜 손 형상 인식에 적용하였다.

  • PDF

계층형 신경회로망을 이용한 염색체 영상의 핵형 분류 (Karyotype Classification of The Chromosome Image using Hierarchical Neural Network)

  • 장용훈
    • 한국컴퓨터산업학회논문지
    • /
    • 제2권8호
    • /
    • pp.1045-1054
    • /
    • 2001
  • 본 논문에서는 염색체의 핵형을 자동으로 분류하는 연구방법을 개선하기 위하여 염색체의 영상을 재구성하는 방법과 패턴의 인식을 위해 계층형 신경회로망의 구현에 관한 두 가지의 알고리즘을 제안한다. 먼저 영상 재구성방법을 사용하여 임상적으로 정상인으로 판명된 20명의 염색체 영상에서 형태 구조학적인 특징정보와 농도정보를 추출하였다. 10명에 대하여 추출한 정보를 다섯 가지로 조합하여 계층형 신경회로망(Hierarchical Multilayer Neural Network: HMNN)의 학습입력으로 사용하여 핵형을 분류할 수 있는 패턴인식기를 구현하였다. 그리고 나머지 10명에 대한 다섯 가지의 조합된 정보를 HMNN의 분류입력으로 사용하여 실험한 결과 약 98.26%의 우수한 인식률을 나타내는 최적화된 계층적 인공신경회로망을 구현할 수 있었다.

  • PDF

PRI 상태행렬과 통계값을 이용한 레이더 PRI 신호패턴 인식 (Radar Signal Pattern Recognition Using PRI Status Matrix and Statistics)

  • 이창호;성태경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.775-778
    • /
    • 2016
  • 본 논문에서는 전자전 신호 환경에서 ES(Electronic Support) 시스템의 레이더 신호의 PRI 변조 형태를 자동으로 인식하는 새로운 방법을 제안한다. 제안방법은 레이더 펄스 신호의 펄스반복간격인 PRI(Pulse Repetition Interval)값의 패턴을 저장하고 통계적 테이터를 사용하여 먼저 2개의 클래스로 분류한다. 분류된 2개의 클래스를 PRI의 통계적 특성을 이용하여 각각의 PRI 신호를 인식한다. 제안 방법을 고정(constant)PRI, 지터(jitter)PRI, 스태거(stagger)PRI, D&S(dwell&switch)PRI, 슬라이딩(sliding) PRI 등 5종류의 다양한 PRI 신호들에 적용한 결과 정확히 PRI 변조방식을 식별하였다.

  • PDF

초음파센서 뉴로퍼지 시스템을 이용한 패턴인식률 개선 (Ultrasonic Sensor System using Neuro-Fuzzy Algorithm for Improvement of Pattern Recognition Rate)

  • 나철훈;최광석;부수일
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.721-724
    • /
    • 2014
  • 초음파센서는 저렴성, 단순한 구조, 기계적 강인성, 사용상의 적은 제약 등의 이점 때문에 다양한 응용분야에 적용된다. 물체의 인식에 초음파센서를 사용하기에는 낮은 분해능을 초래하는 불량한 방향성과 측정오류를 유발하는 반사성의 어려움을 내재하고 있다. 이런 문제를 개선하기 위해서 다양한 센서의 배열형태에서 많은 수의 센서를 사용하거나, 일정 수의 센서를 사용할 경우에는 센서의 배열을 기계적으로 이동시킨다. 본 논문에서는 물체의 패턴인식에 있어서 가장 기본적인 거리, 물체크기, 물체각도 값을 얻기 위해 간단하게 구성된 전자회로를 부가하여 초음파센서의 송출전압을 여러 단계로 변경시켜 얻어낸 데이터에 뉴로퍼지 기반의 지능적 계산 알고리즘을 적용하여 개선된 결과를 얻는다.

  • PDF

형태정합을 이용한 집적회로 패턴의 전체좌표 추출 (Global Coordinate Extraction of IC Chip Pattern Using Form Matching)

  • 안현식;조석제;이철동;하영호
    • 대한전자공학회논문지
    • /
    • 제26권4호
    • /
    • pp.120-126
    • /
    • 1989
  • 최근 집적도의 증가와 더불어 집적회로 제작과 점검을 자동화하기 위하여 영상처리방법을 이용한 집적회로의 인식 알고리듬이 개발되고 있다. 집적회로를 인식하기 위해서는 프레임 영상으로 부터 특징을 얻고 이것으로써 칩내의 모든 프레임 영상을 정합하여야한다. 본 논문은 layout 정보를 나타내는 꼭지점들의 위치와 형태를 직선화 알고리듬을 이용하여 추출한다. 부분적으로 겹치는 이웃 프레임들을 얻어진 꼭지점의 위치와 형태를 특징으로 하여 정합함으로써 꼭지점의 전체적 좌표와 형태를 추출한다.

  • PDF

초음파센서 시스템의 패턴인식 개선을 위한 뉴로퍼지 신호처리 (Pattern Recognition Improvement of an Ultrasonic Sensor System Using Neuro-Fuzzy Signal Processing)

  • 나승유;박민상
    • 전자공학회논문지S
    • /
    • 제35S권12호
    • /
    • pp.17-26
    • /
    • 1998
  • 초음파센서는 저렴성, 단순한 구조, 기계적 강인성, 사용상의 적은 제약 등의 이점 때문에 실제 다양한 응용 분야에 적용되지만 물체의 인식에 초음파센서를 사용하기에는 낮은 분해능을 초래하는 불량한 방향성과 측정오류를 유발하는 반사성의 어려움을 내재하고 있다. 일반적인 거리계에 사용되는 TOF(time of flight) 방법은 작은 물체의 형태, 즉 평면, 코너, 에지의 구별이 불가능하므로 많은 수의 센서를 배열형태로 사용하거나, 일정수의 센서를 사용할 경우에는 센서의 배열을 기계적으로 이동시키는 방법, 그리고 초음파 반사신호의 물리적인 특징을 해석하여 물체를 구별 인식한다. 본 논문에서는 간단하게 구성된 전자회로를 부가하여 초음파센서의 송출전압을 여러 단계로 변경시켜 가면서 송출음파를 조절하고, 물체의 패턴인식에 있어서 가장 기본적인 거리뿐만 아니라 물체크기, 물체각도, 물체이동 값을 위해 센서 데이터의 조합을 이용한 보간법과 제안한 뉴로퍼지 기반의 지능적 게산 알고리즘을 적용하여 물체의 패턴 인식을 개선한다.

  • PDF

이중나선의 패턴 인식 분석과 CosExp와 시그모이드 활성화 함수를 사용한 캐스케이드 코릴레이션 알고리즘의 최적화 (Pattern Recognition Analysis of Two Spirals and Optimization of Cascade Correlation Algorithm using CosExp and Sigmoid Activation Functions)

  • 이상화
    • 한국산학기술학회논문지
    • /
    • 제15권3호
    • /
    • pp.1724-1733
    • /
    • 2014
  • 본 논문에서는 비모노톤함수(non-monotone function)인 CosExp(cosine-modulated symmetric Exponential function) 함수와 모노톤함수(monotone function)인 시그모이드 함수를 캐스케이드 코릴레이션 알고리즘(Cascade Correlation algorithm)의 학습에 병행해서 사용하여 이중나선문제(two spirals problem)의 패턴인식에 어떠한 영향이 있는지 분석하고 이어서 알고리즘의 최적화를 시도한다. 첫 번째 실험에서는 알고리즘의 후보뉴런에 CosExp 함수를 그리고 출력뉴런에는 시그모이드 함수를 사용하여 나온 인식된 패턴을 분석한다. 두 번째 실험에서는 반대로 CosExp 함수를 출력뉴런에서 사용하고 시그모이드 함수를 후보뉴런에 사용하여 실험하고 결과를 분석한다. 세 번째 실험에서는 후보뉴런을 위한 8개의 풀을 구성하여 변형된 다양한 시그모이드 활성화 함수(sigmoidal activation function)를 사용하고 출력뉴런에는 CosExp함수를 사용하여 얻게 된 입력공간의 인식된 패턴을 분석한다. 네 번째 실험에서는 시그모이드 함수의 변위를 결정하는 세 개의 파라미터 값을 유전자 알고리즘을 이용하여 얻는다. 이 파라미터 값들이 적용된 시그모이드 함수들은 후보뉴런의 활성화를 위해서 사용되고 출력뉴런에는 CosExp 함수를 사용하여 실험한 최적화 된 결과를 분석한다. 이러한 알고리즘의 성능평가를 위하여 각 학습단계 마다 입력패턴공간에서 인식된 이중나선의 형태를 그래픽으로 보여준다. 최적화 과정에서 은닉뉴런(hidden neuron)의 숫자가 28에서 15로 그리고 최종적으로 12개로 줄어서 학습 알고리즘이 최적화되었음을 확인하였다.

Boosted 국부 이진 패턴을 적용한 얼굴 표정 인식에 관한 연구 (A Study on Facial Expression Recognition using Boosted Local Binary Pattern)

  • 원철호
    • 한국멀티미디어학회논문지
    • /
    • 제16권12호
    • /
    • pp.1357-1367
    • /
    • 2013
  • 최근 얼굴 표정 인식에 있어 영상 기반의 방법의 하나로서 ULBP 블록 히스토그램 피쳐와 SVM을 분류기로 사용한 연구가 수행되었다. Ojala 등에 의해 소개된 LBP는 높은 식별력과 조명의 변화에 대한 내구성과 간단한 연산 때문에 영상 인식 분야에 많이 사용되고 있다. 본 논문에서는 ULBP 블록 히스토그램을 계산함에 있어 분할 영역의 이동, 크기 변화에 더하여 미세한 특징 요소를 표현할 수 있도록 $LBP_{8,2}$$LBP_{8,1}$를 결합하였다. $LBP_{8,1}$ 660개, $LBP_{8,2}$ 550개의 분할 창으로부터 1210개의 ULBP 히스토그램 피쳐를 추출하고 이로부터 AdaBoost를 이용하여 50개의 약 분류기를 생성하였다. $LBP_{8,1}$$LBP_{8,2}$가 결합된 하이브리드 형태의 ULBP 블록 히스토그램 피쳐와 SVM 분류기를 이용함으로써 표정 인식률을 향상시킬 수 있었으며 다양한 실험을 통하여 이를 확인하였다. 본 논문에서 제안한 하이브리드 Boosted ULBP 히스토그램의 경우에 표정의 인식률이 96.3%로 가장 높은 결과를 보였으며 제안한 방법의 우수성을 확인하였다.

다중 클래스 분류를 위한 강인한 SVM 설계 방법 - 생체 인식 데이터에의 적용 - (Robust SVM Design for Multi-Class Classification - Application to Biometric data -)

  • 조민국;박혜영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.760-762
    • /
    • 2005
  • Support vector machine(SVM)은 졸은 일반화 능력을 가진 학습시스템으로, 최근 다양한 패턴 인식 분야에서 적용되고 있다. SVM은 기본적으로 이진 분류기이므로 두 개 이상의 클래스를 분류하기 위해서는 다중 클래스 분류가 가능한 형태로의 설계 방법이 필요하다. 이를 위해 각 클래스별로 독립적인 SVM들을 만들어 결과를 병합하는 방식이 주로 사용되어 왔다. 그러나 이러한 방법은 클래스의 수는 않고 한 클래스 내의 데이터의 수가 많지 않은 경우에는 SVM의 일반화 성능을 저하시키고 노이즈에 민감해지는 문제점을 가지고 있다. 이를 해결하기 위해 본 논문에서는 각 클래스내의 데이터간의 유사도 측정을 위한 통계적 정보를 안정적으로 추출하기 위해 두 데이터의 쌍을 입력으로 받는 새로운 SVM 설계 방법을 제시한다. 제안한 방법을 실제 생체인식 데이터에 적용한 실험에서 기존의 방법보다 우수한 분류 성능을 보임을 확인할 수 있었다.

  • PDF