• Title/Summary/Keyword: 형질 세포

Search Result 751, Processing Time 0.025 seconds

Chromosome Analysis Using GISH and FISH of Interspecific Hybrids between Allium cepa L. and A. fistulosum L. (GISH와 FISH를 이용한 양파와 파간 종간교잡계통의 염색체 분석)

  • Kim, Cheol-Woo;Lee, Eul-Tai;Kim, Hwa-young;Choi, In-Hu;Bang, Jin-Ki;Koo, Dal-Hoe;Bang, Jae-Wook
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.468-473
    • /
    • 2009
  • Fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) were used for chromosome analysis of hybrids (2n=16) between onion (Allium cepa L., 2n=2X=16) and welsh onion (A. fistulosum L., 2n=2X=16). 5S rDNA, 45S rDNA, and tandemly repeated DNA (TSD) sequence were used as probes for FISH analysis. A. fistulosum specific DNA probe of telomeric repeats and A. fistulosum DNA were used for GISH analysis. In the analysis of meiotic chromosome GISH revealed that hybrids have 7 bivalants and 2 univalents chromosome and 2 univalents were derived from A. fistulosum chromosomes. In somatic chromosomes of hybrid each 8 chromosomes were derived from A. cepa and A. fistulosum, respectively. FISH signal of 45S rDNA probe in A. fistulosum was detected at secondary constriction of chromosomes, while FISH signal in A. cepa was observed in both secondary constriction and telomere of chromosomes. TDS signals in A. fistulosum chromosomes were detected at all subtelomeric of 8 chromosomes and also in 2 pericentromeric of the chromosomes, whereas TDS signals in A. cepa were observed only in subtelomeric in all chromosomes. The pattern of TDS signal in hybrid chromosomes was similar to those of A. fistulosum chromosomes.

Oncolytic Viruses - A New Era for Cancer Therapy (종양 용해성 바이러스-암 치료에서의 새 시대)

  • Ngabire, Daniel;Niyonizigiye, Irvine;Kang, Min-jae;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.29 no.7
    • /
    • pp.824-835
    • /
    • 2019
  • In recent decades, oncolytic viruses (OVs) have extensively been investigated as a potential cancer drug. Oncolytic viruses have primarily the unique advantage in the fact that they can only infect and destroy cancer cells. Secondary, oncolytic viruses induce the activation of specific adaptive immunity which targets tumor-associated antigens that were hidden during the initial cancer progression. In 2015, one genetically modified oncolytic virus, talimogene laherparepvec (T-VEC), was approved by the American Food and Drug Administration (FDA) for the treatment of melanoma. Currently, various oncolytic viruses are being investigated in clinical trials as monotherapy or in combination with preexistent cancer therapies like immunotherapy, radiotherapy or chemotherapy. The efficacy of oncolytic virotherapy relies on the balance between the induced anti-tumor immunity and the anti-viral response. Despite the revolutionary outcome, the development of oncolytic viruses for the treatment of cancer faces a number of obstacles such as delivery method, neutralizing antibodies and induction of antiviral immunity due to the complexity, variability and reactivity of tumors. Intratumoral administration has been successful reducing considerably solid tumors with no notable side effects unfortunately some tumors are not accessible (brain) and require a systemic administration of the oncolytic viruses. In order to overcome these hurdles, various strategies to enhance the efficacy of oncolytic viruses have been developed which include the insertion of transgenes or combination with immune-modulatory substances.

System for Repeated Integration of Various Gene Expression Cassettes in the Yeast Chromosome (효모염색체내에 다양한 유전자발현 cassette의 반복적 integration을 위한 system 구축)

  • Kim, Yeon-Hee
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1277-1284
    • /
    • 2018
  • In this study, a repeated yeast integrative plasmid (R-YIp) harboring Cre/loxP system was constructed to integrate various gene expression cassettes into the yeast chromosome. The R-YIp system contains a reusable selective marker (CgTRP1), loxP sequence, and target sequence for integration. Therefore, many gene expression cassettes can be integrated into the same position of the same yeast chromosome. In the present study, several model enzymes involving xylan/xylose metabolism were examined, including endoxylanase (XYLP), ${\beta}$-xylosidase (XYLB), xylose reductase (GRE3) and xylitol dehydrogenase (XYL2). Efficient expression of these genes was obtained using two promoters (GAL10p and ADH1p) and various plasmids (pGMF-GENE and pAMF-GENE plasmids) were constructed. The XYLP, XYLB, GRE3, and XYL2 genes were efficiently expressed under the control of the GAL10 promoter. Subsequently, R-YIps containing the GAL10p-GENE-GAL7t cassette were constructed, resulting in pRS-XylP, pRS-XylB, pRS-Gre3, and pRS-Xyl2 plasmids. These plasmids were sequentially integrated into chromosome VII of a Saccharomyces cerevisiae strain by repeated gene integration and selective marker rescue. These genes were integrated by the R-YIp system and were stably expressed in the yeast transformants to produce active recombinant enzymes. Therefore, we expect that the R-YIp system will be able to overcome current limitations of the host cells and allow selective marker selection for the integration of various genes into the yeast chromosome.

Genetic Polymorphism of Avian Leukosis Virus Host Receptors in Korean Native Chickens and Establishment of Resistant Line

  • Lee, Kyung Youn;Shin, Yun Ji;Han, Jae Young
    • Korean Journal of Poultry Science
    • /
    • v.49 no.2
    • /
    • pp.99-108
    • /
    • 2022
  • Avian leukosis virus (ALV) is a highly contagious retrovirus that causes tumors and has resulted in great economic loss worldwide owing to its high transmission rate. Various ALV viral subgroups exist, with infections occurring via specific host receptors. The susceptibility or resistance of avian species to the ALV-A and K subgroups is determined by the host receptor, the tumor virus locus A (tva) gene, while that to ALV-B depends on another host receptor, the tumor virus locus B (tvb) gene. The resistance alleles of tva and tvb have primarily been identified in China, but none have beendetected in Korea. We analyzed the frequencies of tva and tvb genotypes in White Leghorn (WL), Korean Ogye (KO), and Korean native chicken (KNC) breeds, and assessed the resistance to ALV subgroups. In WL, both tva and tvb had various genotypes, including susceptibility and resistance alleles, whereas in KO, tva and tvb resistance alleles were dominant. In KNC, tva susceptibility and resistance alleles were mixed, whereas tvb resistance alleles were dominant. In addition, we showed that there were differences in the splicing pattern of tva transcripts and the expression level of tvb transcripts within breeds. Finally, we confirmed that ALV resistance depended on KO and KNC genotypes by in vitro infection of chicken embryonic fibroblasts with ALV. These results highlight that some KO and KNC individuals are naturally resistant to ALV subgroups A, B, and K, and will facilitate the preservation of economically superior traits through selective breeding.

Study on the Growth and Flowering Characteristics according to the Sowing Time of Genetic Resources of Cruciferae (십자화과(Cruciferae) 유전자원의 파종시기에 따른 생육 및 개화특성 조사)

  • Kwang-Soo Kim;Da-Eun Kwon;Ji-Eun Lee;Young-Lok Cha;Yong-Ku Kang
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.52-52
    • /
    • 2020
  • 유채(Brassica napus L.)는 식용유 생산을 목적으로 재배되며, 1975년에는 26.8천ha가 재배되어 연간 생산량이 34.7천톤이 생산되었으나, 외국으로부터 값싼 식용유의 대량수입으로 재배면적이 급격하게 감소되었다. 그러나 최근에 지방자치단체를 중심으로 경관용 재배면적이 증가하고 있고, 건강에 대한 관심이 높아짐에 따라 국내산 non-GM 식용유 생산을 목적으로 유채 재배면적이 급격하게 증가하고 있다. 유채의 대량생산을 위해서는 논 재배가 필수적이나 유채와 벼의 이모작 재배 시기가 겹치는 문제점이 발생하고 있어 조생종 유채의 품종개발과 함께 봄 파종이 가능한 유채의 품종 육성에 대한 요구가 매우 높다. 따라서 본 연구에서는 국내 보유 유채를 포함하는 십자화과(Cruciferae) 유전자원의 특성 평가를 통해 극조숙 유채 품종 육성을 조기에 육성하기 위해 실시하였다. 농촌진흥청 국립유전자원센터에서 분양받은 유전자원 146계통을 파종 재배하면서 핵형분석과 외부형질을 기준으로 정확한 종을 동정하였고, 각 유전자원의 생육 및 개화특성을 조사하였다. 유전자원들을 세포분석기를 이용하여 핵형을 분석한 결과, 전체 146개의 유전자원 중 유채(B. napus L.) 128계통, 갓(B. juncea Sinsk) 6계통, 배추(B. campestris Makino) 9계통, 미분류 3계통 등으로 조사되었다. 유전자원을 가을 파종(10월 22일)하였을 때 개화가 가장 빠른 계통(IT 279089)이 파종 후 137일 이후인 3월7일부터 개화가 시작되었고, 가장 늦은 계통(IT 279198)은 191일 후인 4월 30일에 개화가 시작되었다. 봄 파종(2월 4일)하였을 때 개화가 가장 빠른 계통(IT 279089)이 파종 후 79일 이후인 4월 23일부터 개화가 시작되었고 IT 279092 등 29계통은 추대와 개화가 되지 않았다. 위와 같은 연구결과를 토대로 개화시기가 빠른 유전자원을 육종을 위한 인공교배 시화분친이나 종자친으로 이용하면 지방산 품질이 좋고 극조숙성인 유채 품종의 개발이 가능할 것으로 생각된다.

  • PDF

Immunoglobulin G4-Related Lung Disease Mimicking Lung Cancer: Two Case Reports (폐암으로 오인된 면역글로불린 G4 연관 폐 질환: 2예에 대한 증례 보고)

  • Dae Yun Park;Su Young Kim;Suk Hyun Bae;Ji Young Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.5
    • /
    • pp.1168-1174
    • /
    • 2022
  • Immunoglobulin G4 (IgG4)-related disease is a rare systemic fibroinflammatory condition characterized by elevated serum IgG4 levels and infiltration of IgG4-positive plasma cells in various organs. IgG4-related lung disease shows varied radiologic features on chest CT. Patients usually present with a solid nodule or mass mimicking lung cancer; therefore, distinguishing between IgG4-related disease and other conditions is often challenging. Additionally, co-existing radiologic findings of IgG4-related lung disease may mimic metastasis or lymphangitic carcinomatosis of the lung. We report two cases of histopathologically confirmed IgG4-related lung disease mimicking lung cancer. Chest CT revealed a solid nodule or mass with ancillary radiologic findings, which suggested lung cancer; therefore, IgG4-related lung disease was radiologically indistinguishable from lung cancer in both cases. Measurement of serum IgG4 levels and clinical evaluation to confirm involvement of various organs may be useful to establish the differential diagnosis. However, surgical biopsy evaluation is needed for confirmation.

A Case of Diffuse Large B-cell Lymphoma transformed from Primary Thyroid MALT Lymphoma (갑상선 MALT 림프종으로부터 전환된 미만성 거대 B세포 림프종 1예)

  • Young Rok Jo;Youn Jin Cho;Ju Yeon Pyo;Hye Ran Lee
    • Korean Journal of Head & Neck Oncology
    • /
    • v.39 no.2
    • /
    • pp.13-17
    • /
    • 2023
  • Diffuse large B cell lymphoma (DLBCL) is main subtype of primary thyroid lymphoma and can be histologically transformed from a low-grade B-cell lymphoma. The characteristics and treatment guidelines of these particular DLBCL have not been fully established. The mainstay of treatment of primary thyroid DLBCL is multimodality treatment with chemotherapy and radiotherapy. Meanwhile, surgery can be considered only for diagnosis or alleviation of airway compressive symptoms. A 57-year-old female visited our outpatient clinic for recently enlarged long-held anterior neck mass. A thyroid mass compressing the airway and esophagus was identified on imaging, which was diagnosed as MALT lymphoma by excisional biopsy. After staging, the patient underwent total thyroidectomy with regional lymph node dissection for treatment of stage IIE MALT lymphoma and relieving airway compromise symptoms. The final diagnosis was DLBCL transformed from MALT Lymphoma, and chemotherapy was additionally performed. We report this rare experience with a review of literature.

Clinical Application and Limitations of Myeloma Response Assessment and Diagnosis System (MY-RADS) (골수종 반응평가와 진단체계의 임상적용 및 제한점)

  • Dong Kyun Kim;Sung-Soo Park; Joon-Yong Jung
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.1
    • /
    • pp.51-74
    • /
    • 2023
  • Multiple myeloma, which is a proliferative disease of plasma cells that originate from a single clone, is the second most common hematologic malignancy following non-Hodgkin lymphoma. In the past, its diagnosis was made based on clinical findings (so-called "CRAB") and a skeletal survey using radiographs. However, since the implementation of the International Myeloma Working Group's revised guideline regarding the radiologic diagnosis of multiple myeloma, whole-body (WB) MRI has emerged to play a central role in the early diagnosis of multiple myeloma. Diffusion-weighted imaging and fat quantification using Dixon methods enable treatment response assessment by MRI. In keeping with the trend, a multi-institutional and multidisciplinary consensus for standardized image acquisition and reporting known as the Myeloma Response Assessment and Diagnostic System (MY-RADS) has recently been proposed. This review aims to describe the clinical application of WB-MRI based on MY-RADS in multiple myeloma, discuss its limitations, and suggest future directions for improvement.

Imaging for Multiple Myeloma according to the Recent International Myeloma Working Group Guidelines: Analysis of Image Acquisition Techniques and Response Evaluation in Whole-Body MRI according to MY-RADS (International Myeloma Working Group의 최신 가이드 라인에 따른 다발성 골수종의 영상검사법 및 MY-RADS에 따른 전신 MRI에서의 영상 획득과 반응 평가 소개)

  • A Yeon Son;Hye Won Chung
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.1
    • /
    • pp.150-169
    • /
    • 2023
  • Multiple myeloma (MM) is a malignant hematologic disease caused by the proliferation of clonal plasma cells in the bone marrow, and its incidence is increasing in Korea. With the development of treatments for MM, the need for early diagnosis and treatment has emerged. In recent years, the International Myeloma Working Group (IMWG) has been constantly revising the laboratory and radiological diagnostic criteria for MM. In addition, as whole-body MRI (WBMR) has been increasing used in the diagnosis and treatment response evaluation of patients with MM, the Myeloma Response Assessment and Diagnosis System (MY-RADS) was created to standardize WBMR image acquisition techniques, image interpretation, and response evaluation methods. Radiologists need to have a detailed knowledge of the features of MM for accurate diagnosis. Thus, in this review article, we describe the imaging method for MM according to the latest IMWG guidelines as well as the image acquisition and response evaluation technique for WBMR according to MY-RADS.

Overexpression of rice NAC transcription factor OsNAC58 on increased resistance to bacterial leaf blight (전사인자 OsNAC58 과발현을 통한 벼 흰잎마름병 저항성 증진 벼)

  • Park, Sang Ryeol;Kim, Hye Seon;Lee, Kyong Sil;Hwang, Duk-Ju;Bae, Shin-Chul;Ahn, Il-Pyung;Lee, Seo Hyun;Kim, Sun Tae
    • Journal of Plant Biotechnology
    • /
    • v.44 no.2
    • /
    • pp.149-155
    • /
    • 2017
  • Bacterial blight in rice caused by Xanthomonas oryzae pv. oryzae (Xoo) greatly reduces the growth and productivity of this important food crop. Therefore, we sought to increase the resistance of rice to bacterial blight by using a NAC (NAM, ATAF, and CUC) transcription factor, one of the plant-specific transcription factors that is known to be involved in biotic/abiotic stress resistance. By isolating the OsNAC58 gene from rice and analyzing its biological functions related to Xoo resistance, phylogenetic analysis showed that OsNAC58 belongs to group III. To investigate the biological relationship between bacterial leaf blight (BLB) and OsNAC58 in rice, we constructed a vector for overexpression in rice and generated transgenic rice. The expression analysis resulting from use of RT-PCR showed that OsNAC58-overexpressed transgenic rice exhibited higher levels of OsNAC58 expression than wild types. Further, subcellular localization analysis using rice protoplasts showed that the 35S/OsNAC58-SmGFP fusion protein was localized in the nuclei. Thirteen OsNAC58-overexpressed transgenic rice lines, with high expression levels of OsNAC58, showed more resistant to Xoo than did the wild types. Together, these results suggest that the OsNAC58 gene of rice regulates the rice disease resistance mechanism in the nucleus upon invasion of the rice bacterial blight pathogen Xoo.