• 제목/요약/키워드: 형질전환 벼

검색결과 108건 처리시간 0.031초

Uptake and Expression of Foreign Genes Using Seed-Derived Embryos of Rice (벼 종자 유래 배에서 외래유전자의 도입과 발현)

  • 정구흥
    • Journal of Plant Biology
    • /
    • 제37권1호
    • /
    • pp.77-83
    • /
    • 1994
  • DNA uptake in dry embryos of rice by DNA imbibition was detected by monitoring the expression of chimeric vectors. The selective markers of expression vectors used were ${\beta}-glucuronidase$ ronidase (GUS) and hygromycin phosphotransferase (HPT) genes under the control of CaMV35 S promoter. Frequency of transient expression of the foreign gene was generally 30-50% varying according to the types of vectors and rice cultivars. Dot blot analysis and DNA sequence analysis of inverse polymerase chain reaction products showed that selected rice in hygromycin B (HmB) medium had HPT gene and CaMV35S promoter DNA sequence in genomic DNA of rice. To investigate what ratio of rice having two marker genes simultaneously as rice embryos imbibed the vector DNA having two HPT and GUS gene, transform ants selected in lImB medium were subjected to PCR for GUS gene. It was shown that about 90 percentage of surviving ones in HmB medium had GUS gene.S gene.

  • PDF

Overexpression of rice NAC transcription factor OsNAC58 on increased resistance to bacterial leaf blight (전사인자 OsNAC58 과발현을 통한 벼 흰잎마름병 저항성 증진 벼)

  • Park, Sang Ryeol;Kim, Hye Seon;Lee, Kyong Sil;Hwang, Duk-Ju;Bae, Shin-Chul;Ahn, Il-Pyung;Lee, Seo Hyun;Kim, Sun Tae
    • Journal of Plant Biotechnology
    • /
    • 제44권2호
    • /
    • pp.149-155
    • /
    • 2017
  • Bacterial blight in rice caused by Xanthomonas oryzae pv. oryzae (Xoo) greatly reduces the growth and productivity of this important food crop. Therefore, we sought to increase the resistance of rice to bacterial blight by using a NAC (NAM, ATAF, and CUC) transcription factor, one of the plant-specific transcription factors that is known to be involved in biotic/abiotic stress resistance. By isolating the OsNAC58 gene from rice and analyzing its biological functions related to Xoo resistance, phylogenetic analysis showed that OsNAC58 belongs to group III. To investigate the biological relationship between bacterial leaf blight (BLB) and OsNAC58 in rice, we constructed a vector for overexpression in rice and generated transgenic rice. The expression analysis resulting from use of RT-PCR showed that OsNAC58-overexpressed transgenic rice exhibited higher levels of OsNAC58 expression than wild types. Further, subcellular localization analysis using rice protoplasts showed that the 35S/OsNAC58-SmGFP fusion protein was localized in the nuclei. Thirteen OsNAC58-overexpressed transgenic rice lines, with high expression levels of OsNAC58, showed more resistant to Xoo than did the wild types. Together, these results suggest that the OsNAC58 gene of rice regulates the rice disease resistance mechanism in the nucleus upon invasion of the rice bacterial blight pathogen Xoo.

Molecular cloning and characterization of β-1,3-glucanase gene from Zoysia japonica steud (들잔디로부터 β-1,3-glucanase 유전자의 클로닝 및 특성분석)

  • Kang, So-Mi;Kang, Hong-Gyu;Sun, Hyeon-Jin;Yang, Dae-Hwa;Kwon, Yong-Ik;Ko, Suk-Min;Lee, Hyo-Yeon
    • Journal of Plant Biotechnology
    • /
    • 제43권4호
    • /
    • pp.450-456
    • /
    • 2016
  • Rhizoctonia leaf blight (large patch) has become a serious problem in Korean lawn grass, which is extremely hard to treat and develops mostly from the roots of lawn grass to wither it away. Rhizoctonia leaf blight (large patch) is caused by Rhizoctonia solani AG2-2 (IV). To develop zoysia japonica with strong disease tolerance against this pathogenic bacterium, ${\beta}-1,3-glucanase$ was cloned from zoysia japonica, which is one of the PR-Proteins known to play a critical role in plant defense reaction. ${\beta}-1,3-glucanase$ is known to be generated within the cells when plant tissues have a hypersensitive reaction due to virus or bacterium infection and secreted outside the cells to play mainly the function of resistance against pathogenic bacteria in the space between the cells. This study utilized the commonly preserved part in the sequence of corn, wheat, barley, and rice which had been researched for their disease tolerance among the ${\beta}-1,3-glucanase$ monocotyledonous plants. Based on the part, degenerate PCR was performed to find out the sequence and full-length cDNA was cloned. E.coli over-expression was conducted in this study to mass purify target protein and implement in vitro activation measurement and antibacterial test. In addition, to interpret the functions of ZjGlu1 gene, each gene-incorporating plant transformation vectors were produced to make lawn grass transformant. Based on ZjGlu1 protein, antibacterial activity test was conducted on 9 strains. As a result, R. cerealis, F. culmorum, R.solani AG-1 (1B), and T. atroviride were found to have antibacterial activity. The gene-specific expression amount in each organ showed no huge difference in the organs based upon the transformant and against 18s gene expression amount.

Effect of Osmotic Pressure on hCTLA-lg Production in Transgenic Rice Cell Suspension Cultures (형질전환된 벼세포 배양에 있어서 삼투압 조절에 따른 hCTLA4-lg 생산성 변화)

  • Choi Sung-Hun;Lee Song-Jae;Hong Seok-Mi;Cho Ji-Suk;Kim Dong-Il
    • KSBB Journal
    • /
    • 제20권4호
    • /
    • pp.278-284
    • /
    • 2005
  • An immunosuppressive agent, human cytotoxic T lymphocyte antigen 4 (hCTLA4), is used for the prevention of graft rejection and treatment of autoimmune diseases. hCTLA4-Ig, a CTLA4-immunoglobulin fusion protein, was produced and secreted from transgenic rice cell suspension cultures using rice a-amylase (RAmy3D) expression system. In this system, hCTLA4-Ig expression was regulated metabolically by sugar starvation. For the purpose of improving hCTLA4-Ig production, the effects of osmotic pressure was investigated in suspension cultures of transgenic rice cells. The highest production level was achieved at 40 mM sorbitol $(140\;mOsm{\cdot}kg^{-1}\;H_2O)$. Using the medium with 8 mM glucose, the level of hCTLA4-Ig in the medium reached 45.3 mg/L. By adjusting the osmotic pressure of induction medium, it was found that the hCTLA4-Ig production could be increased up to 2.1-fold compared with that in batch culture.

Enhanced Production of hCTLA4Ig through Increased Permeability in Transgenic Rice Cell Cultures (형질전환 벼 현탁세포 배양에서 투과성 증진을 통한 hCTLA4Ig의 생산성 증대)

  • Choi, Hong-Yeol;Cheon, Su-Hwan;Kwon, Jun-Young;Lim, Jung-Ae;Park, Hye-Rim;Kim, Dong-Il
    • KSBB Journal
    • /
    • 제31권4호
    • /
    • pp.277-283
    • /
    • 2016
  • In this system, rice cells were genetically modified to express human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) using RAmy3D promoter induced by sugar depletion. Even though the target protein fused with signal sequence peptide, plant cell wall can be a barrier against secretion of recombinant proteins. Therefore, hCTLA4Ig can be trapped inside cell wall or remained in intracellular space. In this study, to enhance the secretion of hCTLA4Ig from cytoplasm and cell walls into the medium, permeabilizing agents, such as dimethyl sulfoxide (DMSO), Triton X-100 and Tween 20, were applied in transgenic rice cell cultures. When 0.5% (v/v) of DMSO was added in sugar-free medium, intracellullar hCTLA4Ig was increased, on the other hand, the secreted extracellular hCTLA4Ig was lower than that of control. DMSO did not give permeable effects on transgenic rice cell cultures. And Triton X-100 was toxic to rice cells and also did not give enhancing permeability of cells. When 0.05% (v/v) Tween 20 was added in rice cell cultures, however, intracellular hCTLA4Ig was lower than that of control cultures. And the maximum 44.76 mg/L hCTLA4Ig was produced for 10 days after induction, which was 1.4-fold increase compared to that of control cultures. Especially, Tween 20 at 0.05% (v/v) showed the positive effect on the secretion of hCTLA4Ig though the decrease of intracellular hCTLA4Ig. Also, Tween 20 as a non-toxic surfactant did not affect the cell growth, cell viability and protease activity. In conclusion, secretion of hCTLA4Ig could be increased by enhancing permeability of cells regardless of the cell growth, cell viability and protease activity.

Effects of Introducing Trehalose Gene into Rice on the Life History of Plodia interpunctella (Lepidoptera: Pyralidae) and Sitophilus zeamais (Coleoptera: Curculionidae) (Trehalose 인자 도입 수도 계통 현미가 화랑곡나방(나비목: 명나방과)과 어리쌀바구미(딱정벌레목: 바구미과)의 생활사에 미치는 영향)

  • Chun, Yong-Shik;Ryu, Ki-Hyun;Kim, Sung-Uk;Ko, Ye-Kang;Choi, Ka-Ram;Nam, Young-Woo;Ryoo, Mun-Il
    • Korean journal of applied entomology
    • /
    • 제47권1호
    • /
    • pp.23-29
    • /
    • 2008
  • The biology of indian meal moth and maize weevil on the trehalose gene introduced rice (var 'Nakdong') (T-Nakdong) was compared to that on the rice without gene introduction (Nakdong) at $28{\pm}1.0^{\circ}C$. Development of the both two insects was significantly delayed; on T-Nakdong, the developmental periods of female moth $({\pm}SE)$ and weevil were $38.46{\pm}0.42\;and\;36.38{\pm}0.28days$, respectively. Whereas those on Nakdong were $36.38{\pm}0.28\;and\;34.33{\pm}0.18$, respectively. Net reproduction rate of Indian meal moth on T-Nakdong $(3.0{\pm}0.14)$ was significantly lower than that on Nakdong $(9.25{\pm}0.13)$, due to the lower emergence rate $(21.08{\pm}0.04%\;vs\;48.30{\pm}0.06%)$. The life table statistics of maize weevil on T-Nakdong was estimated to be similar to those on Nakdong. The delayed development of T-Nakdong suggested that the factor for development of the insects could be changed by the introduction of trehalose gene into the rice variety.

Methods for environmental risk assessment of rice transgenic plants expressing small non-coding RNA (Small non-coding RNA를 발현하는 형질전환 벼의 환경위해성 평가 방법)

  • Jin, Byung Jun;Chun, Hyun Jin;Cho, Hyun Min;Lee, Su Hyeon;Choi, Cheol Woo;Jung, Wook-Hun;Baek, Dongwon;Han, Chang-deok;Kim, Min Chul
    • Journal of Plant Biotechnology
    • /
    • 제46권3호
    • /
    • pp.205-216
    • /
    • 2019
  • Since the RNA interference (RNAi) had been discovered in many organisms, small non-coding RNA-mediated gene silencing technology, including RNAi have been widely applied to analysis of gene function, as well as crop improvement. Despite the usefulness of RNAi technology, RNAi transgenic crops have various potential environmental risks, including off-target and non-target effects. In this study, we developed methods that can be effectively applied to environmental risk assessment of RNAi transgenic crops and verified these methods in 35S::dsRNAi_eGFP rice transgenic plant we generated. Off-target genes, which can be non-specifically suppressed by the expression of dsRNAi_eGFP, were predicted by using the published web tool, pssRNAit, and verified by comparing their expressions between wild-type (WT) and 35S::dsRNAi_eGFP transgenic rice. Also, we verified the non-target effects of the 35S:: dsRNAi_eGFP plant by evaluating horizontal and vertical transfer of small interfering RNAs (siRNAs) produced in the 35S::dsRNAi_eGFP plant into neighboring WT rice and rhizosphere microorganisms, respectively. Our results suggested that the methods we developed, could be widely applied to various RNAi transgenic crops for their environmental risk assessment.

Current Research Status on the Development of Genetically Modified Plants in Korea (유전자변형식물의 국내 연구 현황)

  • Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • 제30권1호
    • /
    • pp.1-6
    • /
    • 2003
  • In an attempt to evaluate the current research status of genetically modified (GM) plants, the scientific research publications in Korea as well as in international SCI journals were screened. About 190 research articles related to the development of GM plants were searched from 10 different domestic journals in the last 12 years (Jan. 1990 to Sept. 2002), The researches in 65 articles were carried out with tobacco plant, 20 with rice, 19 with potatoes, and less then 9 articles from each other plant species, respectively, In total, 38 different plant species were being subjected for the development of GM plants. In particular, there was only one article for each major staple grains such as wheat, barley, soybean, and maize. In more than 47% of total published articles, scientists mainly focused on the basic research such as developing transformation system (46 articles), gene expression study in transgenic plants (34), and vector constructions (10). In addition, 28 articles which main authors are Korean scientists were searched from 11 different international SCI journals. Again, major plants for GM research were tobacco (10) and rice (7). More than 50% of published articles were focused on the basic research, gene expression study with transgenic plants (16). The publications on the research of disease-resistant plants were 7 articles, 3 for the development of stress-resistant and 2 for the herbicide-resistant plants, respectively. It is believed that the last 10 year's investment through government organizations has just strengthen the capacity for the next big stride on agricultural biotechnology in Korea.