클래스정보에 대한 속성의 추출 및 분류에서 주로 추출된 클래스의 정보가 단지 원시코드의 코멘트에서 추출되었기 때문에 클래스에 대한 정확한 기능 및 용도에 대한 Document가 부족하여 실제로 이용자가 최적의 부분을 추출하기가 어려웠다. 이러한 것들을 향상시키기 위하여 본 연구에서는 객체에 대한 클래스뿐만 아니라 패턴모델의 설계에서도 객체지향모델링 방법을 이용하여 메타모델과 메타데이터를 설계하였다. 그리고 XMI 메타모델로 정의된 디자인패턴의 세부적인 클래스의 메타데이터의 생성에 중점을 두었으며, 마크업언어로 XML-스키마 형식을 이용하여 심플타입(simple type)과 콤플렉스타입(complex type)으로 분류하였다. 그 결과 메타데이터 엘리먼트 단위영역별로 마크업언어를 생성하여 소프트웨어 설계에서 효과적인 재사용을 할 수 있었다.
Proceedings of the Korea Contents Association Conference
/
2019.05a
/
pp.21-22
/
2019
본 연구는 K-Pop에서 보컬과 악기의 선율이 모드(Mode)를 중심으로 어떻게 사용되었는지 분석하고 활용기법에 대해 제시한다. 음악의 분류는 크게 화성을 중심으로 만들어진 조성음악(Tonal Music)과 모드를 중심으로 만들어진 선법음악(Modal Music)으로 나뉜다. 현재 K-Pop에서 화성을 바탕으로 하여 선율을 표현하는 수단을 목소리와 악기로 분류했을 때 두 개의 사용비율은 비슷하다. 선율의 표현영역이 넓어지면서 블랙핑크 타이틀곡에 모드와 음계를 활용한 특징이 나타났다. 첫 번째, 노래의 기능적 형식에 따라 사용한 모드가 구분된다. 두 번째, 목소리를 통해 표현하는 선율보다 악기의 선율이 리듬적으로 부각되었다. 마지막으로 화음을 적게 사용하고, 화음의 성질을 결정짓는 3음을 생략하는 방식이 화음과 선율에 나타난다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.843-846
/
2022
오늘날 인터넷이 보편화되었고, 최근에는 최근에는 코로나19 유행으로 사람들이 집에 머무르는 시간이 많아지면서 여러 온라인 플랫폼을 통해 영화, 드라마 등의 프로그램을 시청하는 것에 관심이 많아지고 있다. 또한, 그러한 시대적 흐름에 따라 시즌제 형식의 시리즈물을 통해 보다 퀄리티 높은 콘텐츠를 보고자 하는 소비자 니즈도 증가하고 있다. 시리즈물은 전편과 속편이 유기적으로 연결되기 때문에 전편의 리뷰를 분석하여 관객의 니즈를 파악하고 그것을 속편에 반영하는 것이 중요해 보인다. 따라서 본 연구에서는 텍스트 분류를 통해 시리즈물의 전편과 속편 리뷰의 긍정 유사도를 비교하고, 나아가 긍정 유사도가 흥행 성적에 유의미한 영향을 미치는지 알아보고자 한다.
본 논문에서는 특정 서비스군의 소비자 니즈를 신속히 파악하기 위하여 일기와 같은 자연언어 텍스트를 활용한 분류 모델을 개발한다. 목적에 맞는 감정상태군을 정의하여 필수적인 감정들로 통합한 후 주어진 데이터셋에서 해당 감정 컬럼을 추출하여 텍스트 형식을 통일한다. 파이썬의 Keras 라이브러리를 사용하여 임베딩 레이어, LSTM 레이어, 밀집 레이어 등으로 학습 네트워크를 구성한 후 추출된 텍스트로 학습한 결과는 15회의 이포크 수행으로 98%의 정확도에 도달한다.
The objective of this study is to develop the new vehicle classification algorithm and minimize classification errors. The existing vehicle classification algorithm collects data from loop and piezo sensors according to the specification("Vehicle classification guide for traffic volume survey" 2006) given by the Ministry of Land, Transport and Maritime Affairs. The new vehicle classification system collects the vehicle length, distance between axles, axle type, wheel-base and tire type to minimize classification error. The main difference of new system is the "Wandering" sensor which is capable of measuring the wheel-base and tire type(single or dual). The wandering sensor obtains the wheel-base and tire type by detecting both left and right tire imprint. Verification tests were completed with the total traffic volume of 762,420 vehicles in a month for the new vehicle classification algorithm. Among them, 47 vehicles(0.006%) were not classified within 12 vehicle types. This results proves very high level of classification accuracy for the new system. Using the new vehicle classification algorithm will improve the accuracy and it can be broadly applicable to the road planning, design, and management. It can also upgrade the level of traffic research for the road and transportation infrastructure.
Although the domestic aviation industry has made rapid progress with the development of aircraft manufacturing and transportation technologies, aviation safety accidents continue to occur. The supervisory agency classifies hazards and risks based on risk-based aviation safety data, identifies safety trends for each air transportation operator, and conducts pre-inspections to prevent event and accidents. However, the human classification of data described in natural language format results in different results depending on knowledge, experience, and propensity, and it takes a considerable amount of time to understand and classify the meaning of the content. Therefore, in this journal, the fine-tuned KoBERT model was machine-learned over 5,000 data to predict the classification value of new data, showing 79.2% accuracy. In addition, some of the same result prediction and failed data for similar events were errors caused by human.
Comments are short and not use spacing words or comma more than general document. We convert the 7-gram into 3-gram and select key features using topic signature. Topic signature is widely used for selecting features in document classification and summarization. We use the SVM(Support Vector Machines) as a classifier. From the result of experiments, we can see that the proposed method is outstanding over the previous methods. The proposed system can also apply to other languages.
관상학(Physiognomy)이란 사람의 얼굴을 보고 그의 운명, 성격, 수명 따위를 판단하는 방법을 연구하는 학문을 말한다. 이 논문에서 언급하는 관상학은 동양에서 말하는 관상학, 특히 얼굴의 부분적 특성이나 전체적인 조화를 통해 성격과 운영을 예측하는 학문을 의미한다. 이 연구는 동양 관상학을 적용한 성격별 얼굴 설계 시스템 구축에 관한 것으로, 첫째, 보편적인 성격 분류를 위해 MBTI에서 다루는 성격 어휘 161개를 군집분석을 통해 39개의 대표 어휘로 추출하였다. 추출된 대표 성격 어휘의 의미상 거리를 나타내기 위하여 서베이를 통해 얻은 데이터를 다차원 척도법을 통해 2차원 공간상에 성격 어휘의 관계를 분석하였다. 둘째, 얼굴 시각화를 위해 먼저 얼굴의 형태적 특성을 결정짓는 요소를 크게 얼굴형, 눈, 코, 입, 이마, 눈썹으로 분류하고, 분류된 6가지 얼굴 형태의 29가지 하위요소 별 성격을 한국인의 얼굴 특성을 기준으로 관상학적 정리 및 숫자형식 코드화를 하였다. 추출된 대표 성격 어휘별 얼굴 요소의 형태를 앞서 정리된 코드에 따라 하나의 얼굴 형태로 조합하여 39가지 얼굴을 시각화 하여 마지막으로, 성격별 얼굴 설계 시스템 'FACE'를 제작하였다. 이 연구는 사람의 성격 특성에 따라 그에 맞는 얼굴 형태를 구현하는 시스템을 제작하여 일반 사용자 뿐 아니라 애니메이션 캐릭터 개발자에게 객관적인 도움을 줄 수 있으며 또한 예로부터 내려오는 관상학의 적용 범위를 넓힐 수 있는 가능성을 보여주었다고 할 수 있다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.18
no.9
/
pp.1269-1282
/
1993
In this paper, we propose to method of recognizing printed chinese characters which combine the coventional deterministic methods and the neural networks. Firstly, we extract four directional vector of strokes from chinese characters. Secondly, we make the mesh of the center of gravity in the vector and then constitute the H x8 feature matrix using black pixel lenth from each meshs. This normalized feature matrix value offer as the input of neural network for classifying into the 14 character types. And this calssified character classify again into Busu group by the Busu recognizing neural network. Finally, we recognize each characters using the distance of similarity between input characters and reference characters. The usefulness of the proposed algorithm is evaluated by experimenting with recognizing the chinese characters.
웹 문서 추천 시스템에서는 유사한 내용의 문서임에도 불구하고 URL이 달라서 다른 문서로 인식하여 사용자에게 추천하는 데이터 희소성 문제가 있다. 여기서 기존 연구들은 이 문제에 대한 해결 방법으로 TF-IDF를 이용하였으나 비용 및 시간의 한계가 있으며 유의어 분류 문제가 있다. 본 논문에서는 Word2Vec을 이용한 웹문서 학습 시스템을 통해 문제를 해결한다. 제안 시스템은 언론사의 뉴스를 수집하고 이를 정형화된 형식으로 분석하여 가공하는 전처리 과정을 거친 후 Word2Vec 학습을 통해 문서 벡터를 생성하고 이를 K-Means 클러스터링으로 유사 문서군으로 분류한다. 이 시스템을 이용하면 데이터 희소성 문제를 해결할 뿐만 아니라 연산량이 TF-IDF에 비해 줄어들고 유의어 분류 시 유사도가 높아지는 강점이 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.