• Title/Summary/Keyword: 형상확인

Search Result 2,740, Processing Time 0.034 seconds

Dynamic Characteristics of a Actuator for Driving EV-Relay as Yoke Shape (요크 형상 변화에 따른 EV-Relay 구동용 액츄에이터의 동작특성 연구)

  • Park, Kug-Nam;Joo, Hyun-Woo;Park, Hong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.912-913
    • /
    • 2011
  • 본 논문은 Yoke 형상 변화에 따른 EV-Relay 구동 액츄에이터의 동작특성에 대해 연구하였다. 요크는 기본 형상을 포함하여 3가지 형태이며, 각 형상에 대해 유한요소해석으로 동작특성을 계산하였다. 계산시간 단축을 위해 2차원 축대칭 모델을 이용하였고, 기계적 부하를 동작특성 계산과정에 포함하여 실제동작상태와 유사하게 표현하였다. 마지막으로, 요크 형상에 따른 3가지 모델의 계산결과를 비교하여 기존 모델보다 형상이 변화된 모델의 동작특성이 개선되었음을 확인하였다.

  • PDF

Aerodynamic Analysis of the Blended Wing Body Type MAV using the Time-Domain Panel Method (시간영역 패널법을 이용한 융합익기 형상 초소형 무인기의 공력해석)

  • Park, Jin-Han;Cho, Lee-Sang;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.637-646
    • /
    • 2010
  • A time-domain panel method based on the potential flow theory and the time-stepping method is developed to predict the steady/unsteady aerodynamic characteristics of FM07, which is the BWB (Blended-wing body) type MAV. In the aerodynamic analyses, we used two types of the initial model(Case I) and the improved model(Case II), which is moved the gravity center toward the rear and has larger aspect ratio. In the steady aerodynamic analyses, it is revealed that improved model has higher lift to drag ratio(L/D) and more stable pitch characteristic than those of the initial model. In the unsteady aerodynamic analyses for sudden acceleration motion similar to the launch phase of MAV, it seemed that there is a rapid increase of the lift coefficient after the launch and unsteady results are good agreed compare with steady results in just a few times. In the analysis for pitch oscillation motion, which is occurred at the cruise condition of the FM07, it shows that unsteady aerodynamic coefficients looped around steady results and the improved model has more sensitive aerodynamic characteristics.

Chine Shape Optimization for Directional Stability at High Angle of Attack (고 받음각에서의 방향 안정성 향상을 위한 Chine 형상 최적설계)

  • Park, Hyeong-Uk;Park, Mee-Young;Lee, Jae-Woo;Byun, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.825-834
    • /
    • 2008
  • Nose chine shape optimization study has been performed to maximize the directional stability at high angle of attack supersonic flow. Various chine shapes are generated using super ellipse equation. By numerically investigating the directional stability characteristics of those shapes, the baseline configuration for the shape optimization has been selected using the three-dimensional Navier-Stokes equations. The configuration is represented by the NURBS curves which can adjust the surface geometry by the control points. The response surfaces are constructed to obtain optimum shape which has high directional stability characteristics and lift-to-drag ratio. From this study, an efficient configuration design and optimization process which utilizes the parameter-based configuration generation techniques and approximation method has been established, then 29% improvement of the directional stability by strong vortexes from chine nose is accomplished.

Back-to-Back Testing based on MC/DC 100% Test case (MC/DC 100% Test case를 활용한 Back-to-Back Testing)

  • Ko, Dong-Ryul;You, Young-Min;Park, In-Kuen;Han, Il-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.500-503
    • /
    • 2017
  • 차량 내 전장부품이 증가하고, 차량 OEM(Original Equipment Manufacturing)이 다양한 차종을 생산 판매함에 따라 다양한 SW(software) 형상이 개발되고 있다. 따라서, 기존에 개발된 SW 형상과 변경된 SW 형상 간에 기능 일치성 검증에 대한 필요성이 증가하고 있다. 두 가지 SW 형상 간에 기능 일치성 확인을 위한 테스팅 방법으로 Back-to-Back Testing이 있는데, 이는 각 SW 형상에 동일한 입력값을 주입하고 동일한 출력값이 산출되는 지 확인하는 테스팅 방법이다. Back-to-Back Testing 수행 시 Test case 설계가 필요한데, Test case의 분량과 테스팅 종료기준에 대해서 아직 확립이 되어 있지 않다. 이제 본 논문에서는 MC/DC(Modified Condition/Decision Coverage) 개념을 이용하여 Test case 분량과 테스팅 종료 기준에 대해서 제시하고, 이를 적용한 사례를 설명한다. 본 논문에서 제시한 Test case 설계 기준을 적용하면, 제한적인 테스팅 일정과 인력을 만족하고, 기능 일치를 확인할 수 있는 충분한 테스팅이 가능할 것으로 판단한다.

Local Shape Analysis of the Hippocampus using Hierarchical Level-of-Detail Representations (계층적 Level-of-Detail 표현을 이용한 해마의 국부적인 형상 분석)

  • Kim Jeong-Sik;Choi Soo-Mi;Choi Yoo-Ju;Kim Myoung-Hee
    • The KIPS Transactions:PartA
    • /
    • v.11A no.7 s.91
    • /
    • pp.555-562
    • /
    • 2004
  • Both global volume reduction and local shape changes of hippocampus within the brain indicate their abnormal neurological states. Hippocampal shape analysis consists of two main steps. First, construct a hippocampal shape representation model ; second, compute a shape similarity from this representation. This paper proposes a novel method for the analysis of hippocampal shape using integrated Octree-based representation, containing meshes, voxels, and skeletons. First of all, we create multi-level meshes by applying the Marching Cube algorithm to the hippocampal region segmented from MR images. This model is converted to intermediate binary voxel representation. And we extract the 3D skeleton from these voxels using the slice-based skeletonization method. Then, in order to acquire multiresolutional shape representation, we store hierarchically the meshes, voxels, skeletons comprised in nodes of the Octree, and we extract the sample meshes using the ray-tracing based mesh sampling technique. Finally, as a similarity measure between the shapes, we compute $L_2$ Norm and Hausdorff distance for each sam-pled mesh pair by shooting the rays fired from the extracted skeleton. As we use a mouse picking interface for analyzing a local shape inter-actively, we provide an interaction and multiresolution based analysis for the local shape changes. In this paper, our experiment shows that our approach is robust to the rotation and the scale, especially effective to discriminate the changes between local shapes of hippocampus and more-over to increase the speed of analysis without degrading accuracy by using a hierarchical level-of-detail approach.

Aerodynamic Effects of Gun Gas on the Aircraft's Armament System (항공기 무장시스템 Gun Gas 공력특성에 관한 연구)

  • Choi, Hyoung Jun;Kim, Seung Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.623-629
    • /
    • 2020
  • This study examined the airflow field around a gun port on the flight condition of gunfire to verify the aircraft performance and safety effects and gun gas rate, path according to the options of diverter configuration. The gun port diverter not only effectively lowered the heat generated by gunfire but also effectively discharged the gun gas upwards. The path of gun gas can be changed according to its configuration. According to the optional configuration of the rear-gun-port diverter, the flow rate, path, and pressure of the gun gas were analyzed during gunfire. An analysis of the internal velocity distribution and the temperature change of the gun port revealed a rapid decrease in flow rate through the rear diverter according to the option configuration. The forward flow rate showed a similar tendency with little change. This ensures that the gun gas generated during gunfire has a sufficient flow distance from the aircraft surface, regardless of the rear gun port diverter's optional configuration. The flow stagnation of gun gas according to the option configuration of diverter had a great influence on the internal temperature rise of a gun port.

A Comparison of Aerodynamic Prediction Methodologies for Missile Configurations (유도무기 형상의 공력 특성 예측 방법 비교)

  • Noh, Kyung-Ho;Kang, Donggi;Kim, Jaehyun;Kim, Young Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.11
    • /
    • pp.755-762
    • /
    • 2022
  • The wind tunnel test data for the missile configuration were compared with analysis results using various semi-empirical code and CFD analysis code. The three types of configurations were used for comparison including 2 types of main wing, inline and interdigitate configuration that the main wing and tail intersect. Additionally, it was confirmed that the vortex flow was accurately predicted by comparing the CFD analysis result with the flow visualization test result.

A Study on the Optimal Shape Prediction of $\mu$BGA Solder Joints ($\mu$BGA 솔더 접합부의 최적 형상 예측에 관한 연구)

  • 신영의;지시헌;후지모토고조;김종민
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.4
    • /
    • pp.35-41
    • /
    • 2001
  • In this paper, several methods to predict the solder joint shape are studied. Although there are various methods to predict the solder joint shape, such as truncated sphere method. force-balanced analytical solution, and energy-based methods like surface evolver developed by Ken Brakke, we calculate solder joint shape of $\mu$BGA by two solder joint shape prediction methods(truncated sphere method and surfaceevolver) and then compare results of each method. The results indicate that two methods can accurately predict the solder Joint shape in an accurate range. After that, we calculate reliability solder joint shape under thermal cycle test by FEA program ANSYS(version 5.62). As a result, it could be found that optimal solder joint shape calculated by solder joint prediction method has best reliability in thermal cycle test.

  • PDF

Free-Form Surface Reconstruction Method from Second-Derivative Data (형상이차미분을 이용한 자유곡면 형상복원법)

  • Kim, Byoung Chang;Kim, DaeWook;Kim, GeonHee
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.5
    • /
    • pp.273-278
    • /
    • 2014
  • We present an algorithm for surface reconstruction from the second-derivative data for free-form aspherics, which uses a subaperture scanning system that measures the local surface profile and determines the three second-derivative values at those local sampling points across the free-form surface. The three second-derivative data were integrated to get a map of x- and y-slopes, which went through a second Southwell integration step to reconstruct the surface profile. A synthetic free-form surface 200 mm in diameter was simulated. The simulation results show that the reconstruction error is 19 nm RMS residual difference. Finally, the sensitivity to noise is diagnosed for second-derivative Gaussian random noise with a signal to noise ratio (SNR) of 16, the simulation results proving that the suggested method is robust to noise.

A study on the machining feature extraction algorithm for turning (선삭가공에 있어서의 가공 특징형상 추출 알고리즘에 관한 연구)

  • 양민양;이성찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.434-439
    • /
    • 1995
  • 본 논문에서는 선삭가공을 부품에 대한 가공 특징형상 추출 알고리즘을 개발하였다. 면저, 설계 특징형상과 가공 특징형상 을 효율적으로 나타내기 위한 데이터 구조를 설계하고, 선삭가공에 사용되는 가공 특징형상의 특성을 검토하였다. 이러한 특성 을 이용하여 주사선(Scan Line)과의 교점으로부터 가공 특징형상을 이루는 요소를 검색하고, 검색된 구성요소를 이용하여 가공 특정형상을 구성하였다. 본 연구에서 개발된 알고리즘은 기존에 사용되어 왔던 패턴비교 방법에서 주어지 패턴이외의 특징 형상을 추출하기가 어렵고 계산 시간이 많이 걸리는 단점을 극복하였다. 또한 기존의 방법으로는 해결되기 어럽던 가공 특징 형상 의 간섭의 검출에서 효율적으로 적용됨을 확인하였다.

  • PDF