• Title/Summary/Keyword: 형광 실리카 나노입자

Search Result 6, Processing Time 0.029 seconds

A Study on the Fluorescence Characteristics of Dye-doped Silica Nanoparticles for Integrated Bio Imaging (융합 바이오 이미징을 위한 염료 도핑 된 실리카 나노입자의 형광 특성에 관한 연구)

  • Kim, Ki-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.5
    • /
    • pp.45-50
    • /
    • 2018
  • The functional nanomaterials of fluorescent dye-doped silica nanoparticles(NPs) are applied to bio applications such as bio-labeling of DNA micro-array, and bio-imaging. Organic dye-doped fluorescent silica NPs exhibit excellent bio-compatibility, non-toxic, and highly hydrophilic properties. In this study, organic fluorescent dyes were dissolved in ethanol, and deionized(DI) water. Organic fluorescent dyes were physically adsorbed to silica NPs and chemically doped to silica NPs. The fluorescence characteristics(FLC) was investigated by UV lamp irradiation of 365 nm wavelength. As results, the FLC of dye-doped silica NPs exhibits better than dye-adsorbed silica NPs and the FLC was improved with the increase of concentration of doped-dyes. The fluorescent organic dyes were well dissolved in ethanol than DI water. The photostability of dye-doped silica NPs was superior than pure fluorescent organic dye. The FLC of optimized dye-doped silica NPs would be applied to agent of non-invasive fluorescence bio-imaging in live cell and in vivo.

A Study on the Blue Fluorescence Characteristics of Silica Nanoparticles with Different Particle Size (실리카 나노 입자의 크기에 따른 청색 형광 특성 연구)

  • Yoon, Ji-Hui;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.1-6
    • /
    • 2019
  • Organic dye-doped silica nanoparticles are used as a promising nanomaterials for bio-labeling, bio-imaging and bio-sensing. Fluorescent silica nanoparticles(NPs) have been synthesized by the modified $St{\ddot{o}}ber$ method. In this study, dye-free fluorescent silica NPs of various sized were synthesized by Sol-Gel process as the modified $St{\ddot{o}}ber$ method. The functional material of APTES((3-aminopropyl)triethoxysilane) was added as an additive during the Sol-Gel process. The as-synthesized silica NPs were calcined at $400^{\circ}C$ for 2 hours. The surface morphology and particle size of the as-synthesized silica NPs were characterized by field-emission scanning electron microscopy. The fluorescent characteristics of the as-synthesized silica NPs was confirmed by UV lamp irradiation of 365 nm wavelength. The photoluminescence (PL) of the as-synthesized silica NPs with different size was analyzed by fluorometry. As the results, the as-synthesized silica NPs exhibits same blue fluorescent characteristics for different NPs size. Especially, as increased of the silica NPs size, the intensity of PL was decreased. The blue fluorescence of dye-free silica NPs was attributed to linkage of $NH_2$ groups of the APTES layer and oxygen-related defects in the silica matrix skeleton.

Development of Lateral Flow Immunofluorescence Assay Applicable to Lung Cancer (폐암 진단에 적용 가능한 측면 유동 면역 형광 분석법 개발)

  • Supianto, Mulya;Lim, Jungmin;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.173-178
    • /
    • 2022
  • A lateral flow immunoassay (LFIA) method using carbon nanodot@silica as a signaling material was developed for analyzing the concentration of retinol-binding protein 4 (RBP4), one of the lung cancer biomarkers. Instead of antibodies mainly used as bioreceptors in nitrocellulose membranes in LFIA for protein detection, aptamers that are more economical, easy to store for a long time, and have strong affinities toward specific target proteins were used. A 5' terminal of biotin-modified aptamer specific to RBP4 was first reacted with neutravidin followed by spraying the mixture on the membrane in order to immobilize the aptamer in a porous membrane by the strong binding affinity between biotin and neutravidin. Carbon nanodot@silica nanoparticles with blue fluorescent signal covalently conjugated to the RBP4 antibody, and RBP4 were injected in a lateral flow manner on to the surface bound aptamer to form a sandwich complex. Surfactant concentrations, ionic strength, and additional blocking reagents were added to the running buffer solution to optimize the fluorescent signal off from the sandwich complex which was correlated to the concentration of RBP4. A 10 mM Tris (pH 7.4) running buffer containing 150 mM NaCl and 0.05% Tween-20 with 0.6 M ethanolamine as a blocking agent showed the optimum assay condition for carbon nanodot@silica-based LFIA. The results indicate that an aptamer, more economical and easier to store for a long time can be used as an alternative immobilizing probe for antibody in a LFIA device which can be used as a point-of-care diagnosis kit for lung cancer diseases.

Surface Modification of Nano Porous Silica Particle for Enzyme Immobilization (효소 고정화를 위안 실리카 나노세공 입자의 표면개질)

  • Cho, Hyung-Min;Kim, Jong-Kil;Kim, Ho-Kun;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.21 no.5
    • /
    • pp.360-365
    • /
    • 2006
  • The objectives of this study were to develop nano-pore silica particles and to modify its surface for use as an enzyme immobilization matrix. Sol-gel reaction was used to produce silica particles of various nano pore sizes with hydroxyl groups on their surfaces. The surface was modified with aldehyde that was confirmed by fluorescence imaging. Trypsin was covalently immobilized by reductive amination. Surface density of the immobilized trypsin was ca. $350{\mu}g/m^2$, which was approximately 17- and 35-fold higher than those from the surfaces with hydroxyl and amine group, respectively. About 90% of the initial enzyme activity was maintained after the 12th use of repeated use. When compared with the commercial matrices, the nano-pore silica particle was superior in terms of immobilization yield and specific activity. This study suggests the nano porous silica particles can be used as enzyme immobilization matrix for industrial applications.

Estimation of damage area on membrane surface by application of fluorescent particles as a surrogate (형광입자를 이용한 분리막 표면 검측과 손상 면적 추정 오차에 대한 연구)

  • Choi, Yunkyeong;Kim, Choah;Kim, Heejun;Cho, Jinwoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.2
    • /
    • pp.171-179
    • /
    • 2014
  • In this study, a novel method was proposed to test the integrity of water treatment system specifically equipped with membrane filtration process. We applied the silica particles coated with a fluorescent agent (rhodamine B isothiocyanate) as a surrogate to detect a membrane process integrity and evaluate the reliability of effluent quality in the system. Additionally, a series of experiments was conducted to evaluate the sensitivity of the method through the laboratory scale experiment. The laboratory scale experiments showed that the feasibility of application of proposed method to detect a breach or damaged part on the membrane surface. However, the sensitivity on predicting the area of a breach was significantly influenced by the testing conditions such as a concentration of surrogate, filtration flux, and detection time. The lowest error of predicting the area of breach was 3.5% at the testing condition of surrogate concentration of 80 mg/L injected with flux of $20L/m^2/hr$ for 10 minutes of detection time for the breach having the actual area of $7.069mm^2$. However, the error of estimation was increased at the small breach with area less than $0.785mm^2$. A future study will be conducted to estimate a damaged area with more accuracy and precision.

Application of fluorescent particles as a tracer to detect the membrane surface damage in a pilot scale membrane bioreactor (형광입자를 이용한 분리막 표면 검측 방법의 파일럿 규모 플랜트 적용)

  • Kim, Choah;Kim, Hee Jun;Cho, Jinwoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.33-40
    • /
    • 2016
  • In this study, a fluorescent silica nano particle is used as the surrogate for challenging test of membrane surface integrity. The particles are functionalized by a fluorescent dying agent so that as an ultraviolet light is imposed a bright fluorescent image from the particles can be taken. If a membrane surface is damaged and has a compromised part larger than the size of surrogate the fluorescent particles would pass through and contained in the permeate. An operator can directly notice whether the membrane surface is damaged or not by detecting a fluorescent image taken from the permeate. Additionally, the size of compromised part is estimated through analysing the fluorescent image in which we surmise the mass of particles included in the permeate by calculating an average RGB value of the image. The pilot scale experiments showed that this method could be applied successfully to determine if a membrane surface had a damaged parts regardless of the test condition. In the testing on the actual damaged area of $4.712mm^2$, the lowest error of estimating the damaged area was -1.32% with the surrogate concentration of 80 mg/L, flux of $40L/m^2/hr$ for 25 minutes of detection. A further study is still going on to increase the lowest detection limit and thus decrease the error of estimation.