• Title/Summary/Keyword: 협력주행

Search Result 101, Processing Time 0.025 seconds

Impact Analysis of Connected-Automated Driving Services on Urban Roads Using Micro-simulation (미시교통시뮬레이션 기반 도심도로 자율협력주행 서비스 효과 분석)

  • Lee, Ji-yeon;Son, Seung-neo;Park, Ji-hyeok;So, Jaehyun(Jason)
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.91-104
    • /
    • 2022
  • The operational design domain (ODD) of autonomous vehicles needs to be expanded on highways and urban roads in light of the substantial commercialization of Level 3 autonomous vehicles. Therefore, this study developed a specific infrastructure autonomous vehicle-based cooperative driving service to ensure the driving safety of autonomous vehicles on city roads. The traffic operation efficiency, safety evaluation, and core evaluation indices for each service were selected and analyzed to study the effect of each service. The result of the analysis confirmed that the traffic operation efficiency and safety of autonomous vehicles were improved through the V2X communication-based autonomous cooperative driving service. On the whole, the significance of this study is in deriving the effect of the autonomous cooperative driving service based on V2X communication on urban roads with interrupting traffic flow.

협력 자율 주행을 위한 V2X 통신기술

  • O, Hyeon-Seo;Choe, Hyeon-Gyun;Song, Yu-Seung
    • Information and Communications Magazine
    • /
    • v.33 no.4
    • /
    • pp.41-46
    • /
    • 2016
  • 본 고에서는 협력 자율 주행을 위한 V2X 통신 기술을 소개한다. 자동차는 IT 기술이 접목되어 편리하고 안전하며 지능화된 자동차로 발전하고 있으며 2020년에는 자율주행자동차가 출현할 것으로 전망하고 있다. V2X 통신 기술은 자동차 안전 지원 서비스를 제공하며 다양한 차량 센서와 융합되어 주행 제어가 이루어지는 협력 자율 주행 서비스도 제공할 수 있다. 본 고에서는 차량 안전 기술과 협력 자율 주행 기술의 개념과 V2X 통신 기술 개발 동향 및 표준화 동향, 그리고 향후 전망에 대하여 살펴 본다.

A Study on the Development of Urban Roads Convoy Driving Service and Effect Analysis (도시부 도로 호송주행(Convoy Driving) 서비스 개발 및 효과분석)

  • Son, Seung-neo;Lee, Ji-yeon;Cho, Yong-sung;Park, Ji-hyeok;So, Jae-hyun(Jason)
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.51-63
    • /
    • 2022
  • Convoy driving is one of the technologies of multi-vehicle cooperation driving along with platoon driving. All over the world, research on vehicle control mechanisms to maintain vehicle formation during convoy driving convoy driving has been actively conducted and in Europe's Autonet 2030 project has developed and demonstrated convoy driving services for highways. But, even the concept of convoy driving is still insufficient in Korea. Therefore, in this study, the concept of convoy driving service was established and scenarios and communication messages for service application on urban roads were developed. And its effectiveness was verified through simulation analysis. As a result of comparing and analyzing individual vehicle cooperative driving and convoy driving for the blind spot support service and dilemma zone safety support service, which are representative V2I cooperative driving services on urban roads, the number of conflicts(indicator of traffic safety) and delays and stops(indicator of traffic efficiency) are significantly improved in convoy driving compared to individual vehicle cooperative driving.

항만용 자율협력주행 동적지도(LDM) 및 관제용 위치인식 설계 방안 연구

  • Kim, Gil-Tae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2020.11a
    • /
    • pp.157-158
    • /
    • 2020
  • 항만용 자율주행 야드트럭운행 환경은 무신호교차로 주행, 낮은 GPS정확도, 악천후상황주행, 이송 컨테이너 위치변경등과 같이 일반 도로의 센서기반의 자율주행차량 운행과 다르게 매우 복잡하다. 이를 위해서는 항만내 특성을 반영한 실시간 위치, 속도 등에 대한 정확한 인식이 중요한 요소이다. 이를 위해서 센서융합과 V2X기반의 복합적인 항만용 실시간 로컬 동적지도 (Local Dynamic Map) 생성 및 V2X기반의 협력측위를 통하여서 기존의 독립적인 자율주행차량의 위치 인식보다 더 개선된 고정밀 위치 인식 정보추출이 필요하다. 본 연구에서는 복합적인 항만용 동적지도 생성관리시스템의 설계 방안 및 협력측위 기술 적용 방안을 제시하고 이를 활용한 항만 구역내 자율주행차량 및 모든 화물 이송장비들의 실시간 위치 인식뿐만 아니라 이동체의 사전 충돌예측 및 비상정지 안전 제어 가능한 V2X 기반의 인텔리젼스 한 3차원 관제시스템 설계 방안을 제시하고자 한다.

  • PDF

Infrastructure 2D Camera-based Real-time Vehicle-centered Estimation Method for Cooperative Driving Support (협력주행 지원을 위한 2D 인프라 카메라 기반의 실시간 차량 중심 추정 방법)

  • Ik-hyeon Jo;Goo-man Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.123-133
    • /
    • 2024
  • Existing autonomous driving technology has been developed based on sensors attached to the vehicles to detect the environment and formulate driving plans. On the other hand, it has limitations, such as performance degradation in specific situations like adverse weather conditions, backlighting, and obstruction-induced occlusion. To address these issues, cooperative autonomous driving technology, which extends the perception range of autonomous vehicles through the support of road infrastructure, has attracted attention. Nevertheless, the real-time analysis of the 3D centroids of objects, as required by international standards, is challenging using single-lens cameras. This paper proposes an approach to detect objects and estimate the centroid of vehicles using the fixed field of view of road infrastructure and pre-measured geometric information in real-time. The proposed method has been confirmed to effectively estimate the center point of objects using GPS positioning equipment, and it is expected to contribute to the proliferation and adoption of cooperative autonomous driving infrastructure technology, applicable to both vehicles and road infrastructure.

Reliable Multicast MAC Protocol for Cooperative Autonomous Vehicles (협력적 자율 차량을 위한 신뢰성있는 멀티케스트 MAC 프로토콜)

  • Kim, Jungsook;Kim, Juwan;Choi, Jeongdan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.3
    • /
    • pp.180-187
    • /
    • 2014
  • This paper introduces reliable multicast MAC protocol for cooperative unmanned vehicles. cooperative unmanned vehicles communicate with infrastructure and other unmanned vehicles in order to increase driving safety. They exchange information related to driving and thus it requires real-time and reliable multicast. However, the international vehicular communication standard, IEEE 802.11p WAVE, does not provide a reliable multicast scheme on the MAC layer. To address the problems of reliability, we propose a reliable multicast protocol called WiVCL, which avoids contention and collision. Our evaluation shows that the WiVCL achieves a high degree of reliability and real-time features.

Some Lessons Learned from Previous Studies in Cooperative Driving Automation (협력형 자율주행 기술 개발 동향과 시사점)

  • Jeon, Hyeonmyeong;Yang, Inchul;Kim, Hyoungsoo;Lee, Junhyung;Kim, Sun-Kyum;Jang, Jiyong;Kim, Jiyoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.4
    • /
    • pp.62-77
    • /
    • 2022
  • A cooperative driving automation system is imperative to overcome the limitation of the stand-alone automated driving technology. By definition, a cooperative driving automation system refers to a technology in which an automated vehicle cooperates with other vehicles or infrastructure to increase driving efficiency and safety. Specifically, in this study, the technical elements necessary for the cooperative driving automation technology and the technological research trends were investigated. Subsequently, implications for future cooperative driving automation technology development were drawn through the research trends. Finally, the importance of cooperative driving automation technology and infra-guidance service for automated vehicles were discussed.

A Study on Driver-vehicle Interface for Cooperative Driving (협력운전을 위한 운전자-차량 인터페이스 연구)

  • Yang, In-Beom
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.5
    • /
    • pp.27-33
    • /
    • 2019
  • Various technical and societal approaches are being made to realize the auto driving (AD) and cooperative driving (CD) including communication network and extended advanced driver support system is under development. In CD, it is important to share the roles of the driver and the system and to secure the stability of the driving, so a efficient interface scheme between the driver and the vehicle is required. This study proposes a research model including driver, system and driving environment considering the role and function of driver and system in CD. An efficient interface between the driver and the vehicle to cope with various driving situations on the CD using the analysis of the driving environment and the research model is also proposed. Through this study, it is expected that the proposed research model and interface scheme could contribute to CD system design, cockpit module development and interface device development.

A Study on the Performance Evaluation of C-ARS(Cooperative Automated Roadway System) in Infrastructure to Vehicle (I2V) Communication Based Service Scenario (인프라-차량(I2V) 통신 기반 서비스 시나리오에 따른 자율협력주행 도로시스템 성능평가 방안 연구)

  • Bae, Myoung Hwan;Kwon, Oh Yong;Kim, Jung Min;Jeong, Hong Jong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.112-123
    • /
    • 2018
  • The C-ARS(Cooperative Automated Roadway System) refers to a road infrastructure system that links automated vehicles with road infrastructure and communicates with each other via V2X communication to support automated vehicles. The purpose of this study is to suggest a performance evaluation method of C-ARS service. This study exemplifies the 'Work zone information service' among I2V service that provide information to automated vehicles in road infrastructure. First, we define the requirements and service scope needed to check the use case analysis and service performance of the service, and propose an evaluation system for performance evaluation of these services. In addition, the evaluation system was used to verify the feasibility of evaluation through the field test of 'Work zone information service'.

Evaluation of LDM (Local Dynamic Map) Service Based on a Role in Cooperative Autonomous Driving with a Road (자율협력주행을 위한 역할 기반 동적정보 서비스 평가 방법)

  • Roh, Chang-Gyun;Kim, Hyoungsoo;Im, I-Jeong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.258-272
    • /
    • 2022
  • The technology implementation method was diversified into an 'autonomous cooperative driving' method to overcome the limitations of a stand-alone autonomous vehicle with vehicle sensor-based autonomous driving. The autonomous cooperative driving method involves exchanging information between roadside infrastructure and autonomous vehicles. In this process, the concept of dynamic information (LDM), a target of cooperation, was established. But, evaluation methods and standards for dynamic information have not been established. Therefore, this study, a dynamic information evaluation method based on information on pedestrians within the moving objects. In addition, autonomous cooperative driving was demonstrated, and dynamic information was also verified through the evaluation method. The significance of this study is that it established the dynamic information evaluation methodology for autonomous cooperative driving for the first time. Based on this, this study is expected to contribute to the application of safe autonomous cooperative driving technology to the field.