The Journal of Korean Association of Computer Education
/
v.19
no.1
/
pp.111-118
/
2016
Measuring similarity in collaborative filtering-based recommender systems greatly affects system performance. This is because items are recommended from other similar users. In order to overcome the biggest problem of traditional similarity measures, i.e., data sparsity problem, this study suggests a new similarity measure that is the optimal combination of previous similarity and the value reflecting the number of co-rated items. We conducted experiments with various conditions to evaluate performance of the proposed measure. As a result, the proposed measure yielded much better performance than previous ones in terms of prediction qualities, specifically the maximum of about 7% improvement over the traditional Pearson correlation and about 4% over the cosine similarity.
본 연구는 협력적 필터링 기법을 이용한 선호도 예측 과정에서 발생하는 추가 정보를 이용하여 선호도 예측 정확도를 향상시킬 수 있는 방안에 대하여 연구하였다. 본 연구에서는 특정 상품에 대한 목표 고객의 선호도 예측에 선정된 이웃의 수와 선호도 예측 정확도와의 관계를 분석하였다. 분석을 위하여 선호도 예측 과정에 선정된 이웃의 수를 4분위수로 4집단으로 구분하여 구분 집단 간 선호도 예측 정확도에 차이가 나타남을 알 수 있었으며 각 집단의 예측 오차들의 평균들을 이용하여 선형의 보정함수를 제안한다. 본 연구의 결과를 바탕으로 추천시스템에서 이웃 수를 이용한 보정함수를 이용하면 예측 정확도를 높일 수 있다.
최근 P2P 모델을 기반으로 한 애플리케이션의 등장으로 다양한 자원을 효율적으로 이용할 수 있게 되었다. P2P에서는 여러 대의 클라이언트를 상호 긴밀하게 연결함으로써 한 대의 서버에 다수의 클라이언트를 연결했을 때 보다 확실한 네트워크의 효과를 기대할 수 있다. 그러나, 기존의 P2P 모델의 경우, 다수의 피어가 네트워크에 참여하여 방대한 양의 자원을 공유할 경우, 원하는 자원을 검색하는데 많은 시간이 소요되는 문제점이 있다. 본 논문에서는 자원 검색의 비효율적인 문제를 해결하고자 협력 필터링 알고리즘을 이용해 P2P 파일 추천 시스템을 제안하고자 한다. 제안한 P2P 시스템은 피어(Peer)들을 유사한 패턴을 갖는 가상 그룹으로 형성해, 그룹 내에서 유용한 자원들을 검색 없이 공유할 수 있도록 하였으며, 자원의 선호도를 기반으로 요청한 자원 외에 추천 시스템을 통해 선호하는 자원을 예측해 제공할 수 있도록 하였다.
Proceedings of the Korean Information Science Society Conference
/
2004.10a
/
pp.160-162
/
2004
기존의 웹 문서 분류 시스템서는 많은 시간과 노력을 요구하며, 연관 단어가 아닌 단일 단어만으로 웹 문서들을 분류하여 단어의 중의성을 반영하지 못해 많은 오분류가 있었다. 이러한 문제점을 해결하기 위해 본 논문에서는 협력적 필터링을 위한 연관 단어 빈도를 사용한 웹 문서 분류 방법을 제안한다. 제안된 방법에서는 웹 문서 내에서 단어들을 추출하고 빈도 가중치를 계산한다. 추출된 단어를 Apriori 알고리즘에 의해 연관 규칙을 생성하고 신뢰도에 단어 빈도 가중치를 반영한다. 수정된 신뢰도를 ARHP 알고리즘에 적용하여 연관 단어들 사이의 유사정도를 계산하고 유사 클래스를 구성한다 생성된 유사 클래스들을 기반으로 웹 문서를 $\alpha$-cut을 이용하여 분류한다 성능평가를 위해 기존의 문서 분류 방법들과 비교 평가를 하였다.
In the life environment changed with not only the quality and the price of the products but also the material abundance, it is the most crucial factor for the strategy of product sales to investigate consumer's sensibility and preference degree. In this perspective, it is necessary to design and merchandise the products in cope with each consumer's sensibility and needs as well as its functional aspects. In this paper, we propose the Fashion Design Recommender Agent System (FDRAS-pro) for textile design applying collaborative filtering personalization technique as one of the methods of material development centered on consumer's sensibility and preference. For a collaborative filtering system based on textile, Representative-Attribute Neighborhood is adopted to determine the number or neighbors that will be used for preferences estimation. Pearson's Correlation Coefficient is used to calculate similarity weights among users. We build a database founded on the sensibility adjectives to develop textile designs by extracting the representative sensibility adjectives from users' sensibility and preferences about textile designs. FDRAS-pro recommends textile designs to a customer who has a similar propensity about textile. To investigate the sensibility and emotion according to the effect of design factors, fertile designs were analyzed in terms of 9 design factors, such as, motif source, motif-background ratio, motif variation, motif interpretation, motif arrangement, motif articulation, hue contrast, value contrast, chroma contrast. Finally, we plan to conduct empirical applications to verify the adequacy and the validity of our system.
A collaborative filtering which supports personalized services of users has been common use in existing web sites for increasing the satisfaction of users. A collaborative filtering is demanded that items are estimated more than specified number. Besides, it tends to ignore information of other users as recommending them on the basis of information of partial users who have similar inclination. However, there are valuable hidden information into other users' one. In this paper, we use Association Rule, which is common wide use in Data Mining, with collaborative filtering for the purpose of discovering those information. In addition, this paper proved that Association Rule applied to Recommender System has a effects to recommend users by the relation between groups. In other words, Association Rule based on the history of all users is derived from. and the efficiency of Recommender System is improved by using Association Rule with collaborative filtering.
Journal of the Korean Institute of Intelligent Systems
/
v.15
no.1
/
pp.104-109
/
2005
Context-awareness is an important element that can provide service of good quality according to users' surrounding environment and status in ubiquitous computing environment. Information gathering tools for context-awareness use small size mobile devices which have easy movement and a mobile agent in mobile device. Now, Mobile agents are consuming much times and expense to collect and recognize each users' context information. Therefore, needs research about structure for users' context information awareness in early time to reduce mobile agent's load. This paper proposes a P2P mobile agent structure that mikes filtering techniques and a P2P agent in mobile agent. The proposed structure analyzes each user's context information in same area, and groups users who have similar preference degree. Grouped users share information using a P2P mobile agent. Also this structure observes and learns to continue on users' action and service, and measures new interrelation.
Proceedings of the Korean Information Science Society Conference
/
2006.10b
/
pp.178-182
/
2006
인터넷과 웹이 일상생활의 일부가 되면서 온라인상에는 방대한 양의 정보가 쌓이게 되었다. 이러한 흐름 속에서 정보의 양은 급속도로 늘어나는 현상을 보이며, ‘개인화’ 를 통해 수많은 데이터들 사이에서 원하는 정보를 자동으로 찾아내는 기술의 중요성이 부각되고 있다. 이를 ‘추천시스템’ 이라 부르며, 내용기반 필터링과 협력적 필터링 등의 연구가 활발히 이루어지고 있다. 그러나 사용자에게 가장 중요한 영향을 미치는 또래의 선호도, 지역, 시대 등의 복합적인 환경을 반영하는데 아직까지 어려움을 지니고 있다. 따라서 본 논문에서는 기존의 필터링들을 조합하고 좀더 편리하게 정보를 공유하고 학습할 수 있는 시맨틱 웹에서 연관 이웃 마이닝 기법을 통해 개인화된 추천 시스템을 설계한다. 생활에서 흔히 접할 수 있는 의상을 다양한 사용자에게 특화되어 코디해주는 시스템을 웹에서 제공한 결과 불필요한 검색시간이 줄어들고 사용자의 피드백을 통해 점차 만족도가 향상됨을 알 수 있었다.
Although there were some technological developments in improving the collaborative filtering, they have yet to fully reflect the actual relation of the items. In this paper, we propose the recommendation system using associative web document classification by word frequency and ${\alpha}$-cut to address the short comings of the collaborative filtering. The proposed method extracts words from web documents through the morpheme analysis and accumulates the weight of term frequency. It makes associative rules and applies the weight of term frequency to its confidence by using Apriori algorithm. And it calculates the similarity among the words using the hypergraph partition. Lastly, it classifies related web document by using ${\alpha}$-cut and calculates similarity by using adjusted cosine similarity. The results show that the proposed method significantly outperforms the existing methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.