• Title/Summary/Keyword: 혈류유동

Search Result 76, Processing Time 0.034 seconds

Blood Flow Simulation in Bifurcated Geometry of Abdominal and Iliac Arteries Based on CT Images (CT영상에 기반한 복부대동맥과 장골동맥 분기관 모델의 혈류유동 해석)

  • Hong Y. S.;Kim M. C.;Kang H. M.;Lee C. S.;Kim C. J.;Lee J. M.;Kim D. S.;Lee K.
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.497-503
    • /
    • 2004
  • Numerical simulation of blood flow has been conducted based on real vessel geometries generated front DICOM medical images of abdominal and iliac bifurcated arteries of a healthy man. A program was developed to read cross sectional images of the three dimensional arteries and smoothly extract boundary coordinates of vessels. Commercial programs were employed for mesh generation and flow simulation. Pressures, velocities, and flow distributions were found to lie within normal physiological ranges. Peak velocity measured in the iliac artery by ultrasound was 20% smaller than that obtained by simulation. The trend of velocity variation in a cardiac cycle was fairly similar between the simulation and the ultrasonic measurements. Simulation based on real vessel geometry of individual patient provides information on pressure, velocity, and its distribution in the diseased arteries or arteries to be surgically treated. The results of simulation may help surgeons to better understand hemodynamic status and surgical need of the patient by revealing variation of the hemodynamic parameters. Futhermore, they may serve as basic data for surgical treatment of arteries. This research is expected to develop to a program in the future that early diagnose atherosclerosis by showing distribution of a hemodynamic index closely related to atherosclerosis in arteries.

Structural Analysis for Constructing a Balloon Type Extracoporeal Membrane Oxygenator using CFD Analysis (CFD 해석을 이용한 Balloon형 인공심폐기 설계를 위한 구조적 해석)

  • Park, Young-Ran;Shim, Jeong-Yeon;Kim, Gi-Beum;Kim, Shang-Jin;Kang, Hyung-Sub;Kim, Jin-Shang;Kim, Min-Ho;Hong, Chul-Un;Kim, Seong-Jong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.238-243
    • /
    • 2011
  • In this study, we attempted a structural analysis in order to design a balloon type extracorporeal membrane oxygenator that can induce blood flow without using blood pumps for the purpose of complementing the weakness in the existing extracorporeal membrane oxygenator. To analyze the flow characteristic of the blood flow within the virtual model of extracorporeal membrane oxygenator, computational fluid dynamics(CFD) modeling method was used. The operating principle of this system is to make the surface of the extracorporeal membrane oxygenator keep contracting and dilating regularly by applying pressure load using a balloon, and the 'ime Function Value'that changes according to the time was applied by calculating a half cycle of sine waveform and a cycle of sine.waveform Under the assumption that the uni-directional blood flow could be induced if the balloon type extracorporeal membrane oxygenator was designed as per the method described above, we conducted a structural analysis accordingly. We measured and analyzed the velocity and pressure of blood flow at both inlet and outlet of the extracorporeal membrane oxygenator through CFD simulation. As a result of the modeling, it was confirmed that there was a flow in accord with the direction of the blood by the contraction/dilation. With CFD simulation, the characteristics of blood flow can be predicted in advance, so it is judged that this will be able to provide the most optimized design in producing an extracorporeal membrane oxygenator.

NUMERICAL STUDY ON THE BLOOD FLOW CHARACTERISTICS OF STENOSED AND BIFURCATED BLOOD VESSELS WITH A PHASE ANGLE CHANGE OF A PERIODIC ACCELERATION (주기 가속도 위상변화에 따른 협착 및 분지 혈관의 혈류 특성에 대한 수치해석적 연구)

  • Ro, K.C.;Cho, S.W.;Lee, S.H.;Ryou, H.S.
    • Journal of computational fluids engineering
    • /
    • v.13 no.3
    • /
    • pp.44-50
    • /
    • 2008
  • The present study is carried out in order to investigate the effect of the periodic acceleration in the stenosed and bifurcated blood vessels. The blood flow and wall shear stress are changed under body movement or acceleration variation. Numerical studies are performed for various periodic acceleration phase angles, bifurcation angles and section area ratios of inlet and outlet. It is found that blood flow and wall shear stress are changed about ${\pm}20%$ and ${\pm}24%$ as acceleration phase angle variation with the same periodic frequency. also wall shear stress and blood flow rate are decreased as bifurcation angle increased.

The Numerical study for flow characteristics of bifurcation in blood vessel (혈관 분지부의 유동 특성에 대한 수치해석 연구)

  • Lee, In-Sub;Ryou, Hong-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.741-746
    • /
    • 2003
  • The main objective of present study is to obtain information for flow characteristics, such as velocity and wall shear stress, of bifurcation in blood vessel. Branch flows for Newtonian fluids are simulated by using Fluent V.6.0. The numerical simulations are carried out for five cases divided by different values of bifurcation angle and area ratio. As a result of simulation, high wall shear stress is appeared at the bifurcated region. As increasing bifurcation angle, pressure drop is increasing. In addition, as the area is decreasing, pressure drop and wall shear stress is increasing.

  • PDF

Effects of Hemodynamics on Morphological Changes of Human Endothelial Cells (혈액유동이 혈관내피세포의 형태변화에 미치는 영향)

  • Suh, Sang-Ho;Yoo, Sang-Sin;Min, Byung-Gu;Chang, Jun-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1521-1529
    • /
    • 1998
  • The objective of this study is to investigate the effects of the hemodynamics on the morphological changes of the human endothelial cells due to the blood flow by in vitro experiment and computer simulation. The morphological changes of the endothelial cells due to the t10w shear stress were observed in the laminar t10w chamber as a function of the exposure time. The observed shapes of the endothelial cells are used to the model shapes of the endothelial cells for numerical study and the pressure and the wall shear stress variations around the endothelial cells are calculated from the numerical results. The endothelial cells elongate along the t10w direction and lessen their heights in the flow field to reduce the pressure and the wall shear stress on the surface.

Electrocardiogram-Gated Multi-Angle Doppler Optical Coherence Tomography (심전도 게이트를 사용한 다관점 도플러 광 단층촬영법)

  • Ahn, Yeh-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.685-691
    • /
    • 2011
  • The aim of this study is to point out the uniqueness of Doppler optical coherence tomography (DOCT) for use in a probe station for (in vivo) visualization of microscale flow and structure and to maximize the effectiveness of DOCT by overcoming its limitations. Conventional DOCT produces images of only one of the velocity components that is parallel to the incident light. In this study, a multi-angle DOCT to quantify a velocity vector field is proposed; this is an extension from a velocity scalar field to a vector field. Quantifying an instantaneous three-dimensional velocity field in a pulsating flow is another challenge because of its limited frame rate. The in-vivo pulsating blood flow is measured by using an electrocardiogram-gated multi-angle DOCT in a hamster cheek pouch model. It is shown that the aliasing problem caused by a relatively low frame rate is resolved by using this method of measurement.

THE INFLUENCES OF SWIRL FLOW ON FRACTIONAL FLOW RESERVE IN MILD/MODERATE/SEVERE STENOTIC CORONARY ARTERIAL MODELS (관상동맥 내의 나선형 유동이 협착도에 따라 분획 혈류 예비능에 미치는 영향에 관한 수치해석)

  • Lee, Kyung Eun;Kim, Gook Tae;Ryu, Ah-Jin;Shim, Eun Bo
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.15-25
    • /
    • 2017
  • Swirl flow is often found in proximal coronary arteries, because the aortic valves can induce swirl flows in the coronary artery due to vortex formation. In addition, the curvature and tortuosity of arterial configurations can also produce swirl flows. The present study was performed to investigate fractional flow reserve alterations in a post-stenotic distal part due to the presence of pre-stenotic swirl flow by computational fluid dynamics analysis for virtual stenotic models by quantifying fractional flow reserve(FFR). Simplified stenotic coronary models were divided into those with and without pre-stenotic swirl flow. Various degrees of virtual stenosis were grouped into three grades: mild, moderate, and severe, with degree of stenosis of 0 ~ 40%, 50 ~ 60%, and 70 ~ 90%, respectively. In this study, three-dimensional computational hemodynamic simulations were performed under hyperemic conditions in virtual stenotic coronary models by coupling with a zero-dimensional lumped parameter model. The results showed that the influence of pre-stenotic swirl inflow is dominant on FFR alteration in mild stenosis, whereas stenosis is dominant on FFR alteration in moderate/severe stenosis. The decrease in FFR caused by swirl flow is more significant in mild stenosis than moderate/severe stenosis. Biomechanical modeling is useful for clinicians to provide insight for medical intervention strategies. This hemodynamic-based parameter study could play a critical role in the development of a non-invasive imaging-based strategy-support system for percutaneous transluminal angioplasty in cases of mild/moderate stenosis.

Numerical Simulation of Flow in a Total Artificial Heart (인공심장내의 혈류유동의 컴퓨터 시뮬레이션)

  • ;K.B
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.87-96
    • /
    • 1992
  • In thIns paper, a numerical simulation of steady laminar and turbulent flow in a two dimensional model for the total artificial heart is'presented. A trlleaflet polyurethane valve was simulated at the outflow orifice while the Inflow orifice had a trileaflet or a flap valve. The finite analytic numerical method was employed to obtain solutions to the governing equations in the Cartesian coordinates. The closure for turbulence model was achieved by employing the k-$\varepsilon$-E model. The SIMPLER algo rithm was used to solve the problem in primitive variables. The numerical solutions of the slulated model show that regions of relative stasis and trapped vortices were smaller within the ventricular chamber with the flap valve at the Inflow orifice than that with the trileaflet valve. The predicted Reynolds stresses distal to the inflow valve within the ventricular chamber were also found to be smaller wlth the flap valve than with the trlleaflet valve. These resu1ts also suggest a correlation be- tween high turbulent stresses and the presence of thrombus In the vicinity of the valves in the total artificial hearts. The computed velocity vectors and trubulent stresses were comparable with previ ously reported in vitro measurements in artificial heart chambers. Analysis of the numerical solo talons suggests that geometries similar to the flap valve(or a tilting disc valve) results in a better flow dynamics within the total artificial heart chamber compared to a trileaflet valve.

  • PDF

Analysis for the Flow and Wall Shear Stress with a Dilatation of an Abdominal Aortic Aneurysm (복부대동맥류의 확장에 따른 유동 및 벽면전단응력 해석)

  • Shin, Sang-Chul;Kim, Kyong-Woo;Lee, Gun-Hyee;Moh, Jeong-Hah;Kim, Dong-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.560-565
    • /
    • 2001
  • The objective of the present study is to investigate the characteristics for flow and wall shear stress in the aneurysm which is a local dilatation of the blood vessel. The numerical simulation using the commercial software for the laminar and steady flow were carried out over the diameter ratios(ratio of maximum diameter of aneurysm to the diameter of blood vessel) ranging from 1.5 to 2.5 and Reynolds number ranging from 900 to 1800. It was shown that a recirculating vortex occupied the entire bulge with its core located closer to the distal end of the bulge and the strength of vortex increased with increase of the Reynolds number and diameter ratio. Especially, for the Reynolds number of 1800 and diameter ratio of 2.5, the very weak secondary recirculating flow was produced at the left upper of the aneurysm. The position of a maximum wall shear stress was the distal end of the aneurysm(z=18mm) regardless of the Reynolds number and diameter ratios. But the maximum values of the wall shear stress increased in proportion to the increase of Reynolds number and diameter ratio.

  • PDF

Is Skeletonized Internal Mammary Artery Harvesting better than Pedicled Harvesting in Respect of the Sternal Blood Flow\ulcorner: An Estimation Using Bone Scan (내유동맥의 골격화 채취는 흉골로의 혈류 감소 측면에서 과연 유리한가 \ulcorner: 골주사를 이용한 평가)

  • 손국희;김영삼;김정택;윤용한;김광호;최원식;백완기
    • Journal of Chest Surgery
    • /
    • v.37 no.6
    • /
    • pp.511-516
    • /
    • 2004
  • Background: One of the theoretical advantages of skeletonized internal mammary artery harvesting in coronary artery bypass surgery is to minimize the interruption of the sternal blood flow inevitably accompanied by internal mammary harvesting. A study using bone scan is designed to determine the effects of internal mammary artery harvesting technique on the sternal blood flow. Material and Method: From April 2002 to March 2003, 27 patients out of 48 patients who underwent the isolated coronary bypass surgery were enrolled into the study. The enrolled patients underwent bone scan in the preoperative period and postoperative period respectively. Bilateral internal mammary artery was used in 8 patients (BIMA group) and single left internal mammary artery in 19 patients (LIMA group). The patients in LIMA group were divided into two groups: LlMA_skel group, in whom left internal mammary artery was harvested in skeletonized fashion (n=12), and LlMA_ped group, in whom left internal mammary artery was harvested in pedicled fashion (n=7). After the bone scan, the region of interest (ROI) was created on the left of the sternum and the mirror image with the same pixel numbers was placed on the right half of the sternum. The mean counts per pixel on the left side of the sternum was compared with those on the right side and expressed as left to right ratio (L/R ratio). Result: In LIMA group, the L/R ratio decreased from 94.6$\pm$4.1% to 87.9$\pm$6.9% (p=0.003) after the operation as compared to BIMA group, in which no change of the L/R ratio was observed. The changed of the L/R ratio in LlMA_skel group and LlMA_ped group were from 95.3$\pm$4.2% to 88.3$\pm$7.7% and from 93.4$\pm$3.9% to 87.4$\pm$5.8% respectively. The % changes in L/R ratio were -7.44 $\pm$7.08 in LIMA_skel group and -6.17$\pm$9.08 in LiMA_ped group, which did not reach the statistical difference. Conclusion: Ipsilateral sternal blood flow is interrupted by internal mammary artery harvesting as evidenced by the decrease in L/R ratio after left internal mammary artery harvesting irrespective of the harvesting techniques. Skeletonized harvesting did not show superiority in respect to sternal blood flow as compared to pedicled harvesting.