• Title/Summary/Keyword: 현장 실증시험

Search Result 127, Processing Time 0.029 seconds

Study on Water Cycle Performance Evaluation Experiment of Permeable Block (투수블럭의 물순환 성능평가 실험에 관한 연구)

  • Jang, Young Su;Park, Jong Bin;Lee, Jae Hyuk;Kim, Jae Moon;Jung, Min Ho;Shin, Hyun Suk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.331-331
    • /
    • 2020
  • 급격한 산업화와 도시화로 인한 도시유역의 불투수면의 증가와 이에 따른 배수능력의 저하로 인해 도시 물순환의 왜곡이 발생하였다. 따라서 과거 도시 물관리 기법의 한계가 나타났으며 이를 위해 저영향개발 기법 등과 같은 도시 물관리 기법의 패러다임이 변화하였다. 본 연구에서는 저영향개발 기법에서 도시유역 내 활용이 유용한 침투형 시설 중 투수블럭에 대한 물순환 성능평가를 실외실험을 통해 분석하였다. 성능평가 실험은 부산대학교 양산캠퍼스 한국 GI&LID 센터 내 투수블록 뿐만 아니라 블록 하부 골재층까지 설치가 가능하도록 되어있어 실제 현장과 유사한 환경을 구축이 가능한 2.4×10.9×0.4 (m) 규모의 주차장형 LID 실증시험시설을 활용하였다. 인공강우 분사를 위한 실외 인공강우모사 장치 크기는 2×2(m)으로 본 시험을 위하여 5개의 인공강우모사 장치를 연결하여 활용하였으며, 본 시험장치는 강우를 공급하기 위한 수조와 펌프, 일정한 유량을 유입하기 위한 유량계, 강우를 분사하기 위한 노즐, 인공강우가 실제 강우와 같이 자유낙하 하도록 구현하기 위한 오실레이터 등으로 구성되었다. 시험대상인 틈새투수블록은 석재블록 규격 400×600×100 mm이며 재질은 받침안정층(흙), 투수블록(화강석)으로 구성되어 있다. 실험의 시나리오는 시험체에 강우강도 30mm/hr, 50mm/hr, 100mm/hr에 해당하는 양을 1시간 동안 유입하여 시험 시작 후, 강우지속시간, 표면유출지속시간, 표면유출량을 1분 단위로 측정. 시험체에 유공관이 설치된 경우에는 침투유출지속시간, 침투유출량도 함께 1분 단위로 측정하였으며 각 강우강도별로 측정하고, 1회 측정 후, 각 시험별 시험 대상체의 조건을 같게 하기 위한(하부 지반의 건조) 약 3일 이후(상황에 따라 변동 가능) 시험하였다. 본 실험의 결과, 강우강도가 30 mm/hr와 50 mm/hr인 경우에는 화강석 틈새투수블록포장에서 지표 유출이 발생하지 않았으며, 강우강도 100 mm/hr의 경우 260 L의 지표 유출이 발생하여, 불투수표면 대비 84%의 지표유출 저감률을 보여줌으로서 투수블럭에 물순환 성능에 대한 효과를 분석하였다.

  • PDF

A Fundamental Study on Laboratory Experiments in Rock Mechanics for Characterizing K-COIN Test Site (K-COIN 시험부지 특성화를 위한 암석역학 실내실험 기초 연구)

  • Seungbeom Choi;Taehyun Kim;Saeha Kwon;Jin-Seop Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.109-125
    • /
    • 2023
  • Disposal repository for high-level radioactive waste secures its safety by means of engineered and natural barriers. The performance of these barriers should be tested and verified through various aspects in terms of short and/or long-term. KAERI has been conducting various in-situ demonstrations in KURT (KAERI Underground Research Tunnel). After completing previous experiment, a conceptual design of an improved in-situ experiment, i.e. K-COIN (KURT experiment of THMC COupled and INteraction), was established and detailed planning for the experiment is underway. Preliminary characterizations were conducted in KURT for siting a K-COIN test site. 15 boreholes with a depth of about 20 m were drilled in three research galleries in KURT and intact rock specimens were prepared for laboratory tests. Using the specimens, physical measurements, uniaxial compression, indirect tension, and triaxial compression tests were conducted. As a result, specific gravity, porosity, elastic wave velocities, uniaxial compressive strength, Young's modulus, Poisson's ratio, Brazilian tensile strength, cohesion, and internal friction angle were estimated. Statistical analyses revealed that there did not exist meaningful differences in intact rock properties according to the drilled sites and the depth. Judging from the uniaxial compressive strength, which is one of the most important properties, all the specimens were classified as very strong rock so that mechanical safety was secured in all the regions.

An Empirical Study on the Relay Pumping Method for the High Pressure of Fire Engine Pump (소방펌프차의 고압방수를 위한 중계방수방식에 관한 실증적 연구)

  • Min, Se-Hong;Kwon, Yong-Joon;Park, Jong-Deok
    • Fire Science and Engineering
    • /
    • v.27 no.1
    • /
    • pp.52-59
    • /
    • 2013
  • In this study, tests were conducted to establish a fire engine of relay waterproof and utilization in order to maintain the pressure in a situation that require high-pressure water-resistant such as a high-rise building fire, etc. As a result of test on the change of a relay waterproof pressure, the measurement result with the hydrant intake of a fire engine opened has reduced approximately 20 % compared to the measurement result with the hydrant intake closed. Similar efficiency showed in the test result that change the pressure of 2 fire engines respectively to use them more efficiently at a fire fighting activity site. A fire engine operation and utilization is proposed based on this study result in order to cope effectively with a fire site requiring high-pressure stream in a high-rise building fire, etc. by using a fire engine held at present because there is no fire pump with high-pressure stream ability arranged at the fire station and there is no regulation on high-pressure fire-fighting pumps in a type approval and verification technology criterion for a fire engine.

Study on Efficiency for Underground Heat Transfer of Metal Heat Exchanger (금속재질 열교환기의 지중 열교환 효율에 관한 연구)

  • Song, Jae-Yong;Kim, Ki-Joon;An, Sang-Gon;Kim, Jin-Sung;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.131-148
    • /
    • 2015
  • The purpose of this study is to analyze and compare the heat transfer efficiency of using copper pipe, stainless pipe and traditional PE pipe commonly used for geothermal heat exchanger, with aims at seeking improved methods. In addition, the varying efficiency of heat transfer from ground heat and groundwater heat was assessed and its applicability was discussed. Design parameters for empirical field study were derived by controlling flow rate, velocity and caliber of pipes of the heat exchanger after the thermal efficiency of the heat exchanger material was evaluated. The heat exchange efficiency and effective thermal conductivity were measured with changing pattern through field thermal efficiency and thermal response test. Experimental results show that the metal material showed higher heat transfer efficiency than the PE pipe. Although the heat transfer efficiency was not high with the increase of the pipe diameter in the flow rate, it was high with the increase of the pipe diameter in the velocity.

Development of Integrated Type Main Frame and Downhole Sonde Apparatus for Hydraulic Packer Testing in Seabed Rock under High Water Pressure (고수압 해저지반 수리특성 조사용 일체형 메인 프레임과 공내 측정장치 개발)

  • Bae, SeongHo;Kim, Jangsoon;Jeon, Seokwon;Kim, Hagsoo
    • Tunnel and Underground Space
    • /
    • v.28 no.3
    • /
    • pp.258-276
    • /
    • 2018
  • The accurate and quantitative ground information on the hydraulic conductivity characteristics of rock mass is one of the key factors for evaluation of the hydro-geological behaviour of rock mass around an excavated opening under high water pressure. For tunnel and rock structures in seabed, where the sea acts as an infinite source of water, its importance become greater with increasing construction depth below sea level. In this study, to improve the problems related with poor system configuration and incorrect data acquisition of previous hydraulic packer testing equipment, we newly developed an integrated main frame and 30 bar level waterproof downhole sonde apparatus, which were optimized for deep hydraulic packer test in seabed rock mass. Integration of individual test equipment into one frame allows safe and efficient field testing work on a narrow offshore drilling platform. For the integrated type main frame, it is possible to make precise stepwise control of downhole net injection pressure at intervals of $2.0kg_f/cm^2$ or less with dual hydraulic oil volume controller. To ensure the system performance and the operational stability of the prototype mainframe and downhole sonde apparatus, the field feasibility tests were completed in two research boreholes, and using the developed apparatus, the REV(Representative Elementary Volume) scale deep hydraulic packer tests were successfully carried out at a borehole located in the basalt region, Jeju. In this paper, the characteristics of the new testing apparatus are briefly introduced and also some results from the laboratory and in-situ performance tests are shown.

Excessive Leakage Measurement Using Pressure Decay Method in Containment Building Local Leakage Rate Test at Nuclear Power Plant (원전 격납건물 국부누설률시험에서의 압력감소법을 이용한 과다누설 측정 방법)

  • Lee, Won Kyu;Kim, Chang Soo;Kim, Wang Bae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.231-235
    • /
    • 2016
  • There are two methods for conducting the containment local leakage rate test (LLRT) in nuclear power plants: the make-up flow rate method and the pressure decay method. The make-up flow rate method is applied first in most power plants. In this method, the leakage rate is measured by checking the flow rate of the make-up flow. However, when it is difficult to maintain the test pressure because of excessive leakage, the pressure decay method can be used as a complementary method, as the leakage rates at pressures lower than normal can be measured using this method. We studied the method of measuring over leakage using the pressure decay method for conducting the LLRT for the containment building at a nuclear power plant. We performed experiments under conditions similar to those during an LLRT conducted on-site. We measured the characteristics of the leakage rate under varies pressure decay conditions, and calculated the compensation ratio based on these data.

Study on Verification Evaluation of Wireless Network Introduction for Waterworks Supervisory and Control (수도사업장 감시제어를 위한 무선통신망 도입 신뢰성검증 연구)

  • Lee, An-Kyu;Park, Eun-Chul;Lee, Dong-Hoon;Hong, Sung-Taek;Kim, Nam
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.6
    • /
    • pp.195-200
    • /
    • 2009
  • In this paper, we verified the reliability through local examination by introducing a wired network that is operated at the local waterworks to wireless LAN based Wi-Fi network. The adopted wireless network compared to the existing wired network through saving cost and reducing breakdown points have been proven to be effective qualitatively and quantitatively. This study proved that wireless networks could be introduced for the advancement of operations management of existing metropolitan water supply and the local waterworks that are operating currently.

  • PDF

A Field Trial of Bokto Seeding Technology for Rice Cultivation in Democratic People's Republic of Korea (벼 복토직파신기술 북한 협동농장 실증시험 연구)

  • Park, K.H.;Kim, H.S.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.9 no.1
    • /
    • pp.91-104
    • /
    • 2007
  • The special project was conducted at the cooperative farm where located at Yakjeon-ri Sukcheon-gun Pyeongannam-do, the Democratic People's Republic of Korea. This farm was firstly introduced a newly developed technology-"Bokto seeding technology" for rice cultivation from the Republic of Korea. Total acreage of rice paddy field cultivated by this technology was 800ha and the average yield was 7.17t/ha with paddy rice which was higher by 109.2% than that of the transplanting method for rice cultivation. In general rice disease was decreased at the Bokto seeded rice plant compared to the transplanted rice plant and root activity was higher in Bokto seeded rice. Optimum seeding amount was determined at rate of 90kg/ha in Pyeongdo 5(early ripening variety) and 110kg/ha at Pyeongdo 11(medium ripening variety) and Pyeongyang 43(late ripening variety), respectively. A recommended sowing time was within late April for late ripening variety like Pyeongyang 43, May 1-5 for medium ripening variety, and May 5-15 for early ripening variety.

Fresh Water Injection Test to Mitigate Seawater Intrusion and Geophysical Monitoring in Coastal Area (해수침투 저감을 위한 담수주입시험 및 지구물리 모니터링)

  • Park, Kwon-Gyu;Shin, Je-Hyun;Hwang, Se-Ho;Park, In-Hwa
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.353-360
    • /
    • 2007
  • We practiced fresh water injection test to identify its applibility as a method of seawater intrusion mitigation technique, and monitored the change of borehole fluid conductivity and the behavior of injected fresh water using borehole multichannel electrical conductivity monitoring and well-logging, and DC resistivity and SP monitoring at the surface. Well-logging and multichannel EC monitoring showed the decrease of fluid conductivity due to fresh water injection. We note that such an injection effect lasts more than several month which means the applibility of fresh water injection as a seawater intrusion control technique. Although SP monitoring did not show meaningful results because of weather condition during monitoring and the defects of electrodes due to long operation time, DC resistivity monitoring showed its effectiveness and applicability as a monitoring and assessment techniques of injection test by means of imaging the behavior and the front of fresh water body in terms of the increase of resistivity with reasonable resolution. In conclusion, we note that geophysical techniques can be an effective method of monitoring and evaluation of fresh water injection test, and expect that fresh water injection may be an practical method for the mitigation of seawater intrusion when applied with optimal design of injection well distribution and injection rate based on geophysical evaluation.

Development of a Parallel Inverter for 2 MW Windpower Generator (2 MW 풍력발전기용 병렬형 Inverter 개발)

  • Choi, Hyo-Jin;Kwon, Sei-Jin;Son, Yoon-Gyu;Suh, Jae-Hak;Jang, Sung-Duk;Oh, Jong-Seok;Kang, Sin-Il;Lee, Hyun-Young;Kwon, Oh-Jung;Lee, Byung-Chul;Hwang, Jin-Su;Ryu, Ji-Yoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.427-431
    • /
    • 2007
  • 본 논문에서는 750 kW 풍력발전용 인버터를 개발한 결과와 2년 동안의 현장실증을 통하여 얻어진 경험을 바탕으로 2 MW 영구자석형 동기발전기(PMSG, Permanent Magnet Synchronous Generator)의 전력변환을 위한 병렬형 인버터의 시뮬레이션과 이를 통한 설계와 제작 및 기본시험 과정을 소개하고자 한다.

  • PDF