• Title/Summary/Keyword: 현장타설

Search Result 638, Processing Time 0.024 seconds

Strength of PSC Bridge Decks using Half-Depth Precast Panel with Loop Joint (루프이음 반단면 프리캐스트 패널을 이용한 PSC 바닥판의 강도평가)

  • Chung, Chul Hun;Kim, Yu Seok;Hyun, Byung Hak;Kim, In Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.433-445
    • /
    • 2009
  • The panels are used as a composite part of the completed deck. They replace the main bottom transverse deck reinforcement and also serve as a form surface for the cast-in-place concrete upper layer that contains the top of deck reinforcement. Research has also demonstrated that mechanical shear ties on the top of the panels are required. In a composite deck with precast panels, it is required to notice behavior of transverse joints between panels. In this paper, static tests of composite deck with shear ties and loop joints were conducted. From the results, the validity of loop joints for continuity of deck was observed. Also, a composite behavior was abserved between precast panel and slab concrete. Tested composite decks with shear ties have 140~164% ultimate strength than have no shear ties due to the increase of composite action. Therefore, the shear ties between the slabs were sufficient to enforce composite flexural behavior to failure.

Behavior Analysis of Assembling Soil Nailed Walls through Large Scaled Load Test (대형파괴재하시험을 통한 조립식 쏘일네일 벽체의 거동분석)

  • Kang, Inkyu;Kwon, Youngho;Park, Shinyoung;Ki, Minju;Kim, Hongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.4
    • /
    • pp.23-36
    • /
    • 2008
  • Soil nailing system can be mentioned to a method of supporting as the shear strength of in-situ soils is increased by passive inclusions. In the general soil nailing system, facing walls are used in two kind of a lattice concrete block or a cast in placed concrete wall. A case of lattice concrete blocks is used in slow slopes greater than 1(V):0.7(H). Also, a case of a cast in placed concrete wall is used in steep slopes less than 1(V):0.5(H). The cast in placed concrete walls are constructed to 30 cm thick together with a shotcrete facing. In this study, the assembling soil nailing method as a new soil nailing system will be proposed. This method is assembly construction using precast concrete panels with 20 cm thick. So, the ability of construction and the quality of facings can be improved more than a conventional soil nailing system. This method can be obtained the effects that a global slope stability increase, as precast concrete panels are immediately put on cutting face after excavating a slope. In this study, confining effects of concrete panels using the assembling soil nailing system were found out by large scaled load tests. In the tests, the load-settlement relationship to an assembling soil nailing system due to the stiff facings as concrete panels appeared to be better than a typical soil nailing system with shotcrete facings.

  • PDF

A Study on the Evaluation of Smear Zone by In-situ Tests (현장시험에 의한 Smear Zone의 평가)

  • 이장덕;구자갑
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.207-216
    • /
    • 2003
  • To evaluate the smear zone caused by the drain installation, 10 piezometers were installed in the typical soft ground in the western coastal area of Korea. The dynamic pore water pressure developed during the drain installation was monitored using piezometers installed at a distance of 10cm, 20cm, 30cm, 40cm and 50cm from the location of the drain. The decay of pore pressure with time after pushing piezometers to depths of 5 meters and 7 meters during the drain installation was monitored to assess flow and consolidation characteristics of the soil after disturbance of the soil due to the drain installation. The drain installation results in shear strain and displacement of the soil and it decreases the permeability of the soil. Hence, the comparison between dissipation of the pore water pressure process in 10 pieszometers before as well as after installation of the drain indicated the diameter of disturbance zone and smear zone, which is related to the cross-sectional dimension of the mandrel. In addition, Cone-pressuremeter(CPM) tests were performed to obtain rigidity index of the soil for an interpretation of the dissipation processes. It has been evaluated by in-situ tests that the smear zone is from 3.0 to 3.6 times of the cross-sectional dimension of the mandrel. The hydraulic conductivity expressed in terms of the coefficient of consolidation after the drain installation was calculated from 3 to 8 times decrease evaluated by Teh & Houlsby equation and CPM test results.

Proposal of a New Design Method of the Pile-Bent Structure Considering Plastic Hinge (단일 현장타설말뚝의 소성힌지를 고려한 최적설계법 제안)

  • Ahn, Sang-Yong;Jeong, Sang-Seom;Kim, Jae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.2
    • /
    • pp.91-101
    • /
    • 2011
  • In this study, a new design method of Pile-Bent structure considering plastic hinge was proposed on the basis of the beam-column model. To obtain the detailed informations, the optimized cross-section ratio between column and pile was analyzed to induce the plastic hinge at the joint section between the pile and column. Base on this study, the optimized diameter ratio of pile and column can be obtained below the inflection point of the bi-linear curve depending on the relations between column-pile diameter ratio ($D_c/D_p$) and normalized lateral cracking load ratio ($F/F_{Dc=Dp}$). Moreover, through comparisons with field cases to find out in-depth limit in which minimum concrete-steel ratio could be applied, in-depth limits ($L_{As=0.4%}$) normalized by the pile length ($L_p$) proportionally decrease as the pile length ($L_p/D_p$)increases up to $L_p/D_p=17.5$, and beyond that in-depth limit converges to a constant value (${\simeq}0.3$).

An Experimental Study and Numerical Analysis on Load Transfer Characteristics of Drilled Shafts (현장타설말뚝의 하중전이 특성에 대한 실험 및 해석적 연구)

  • Eonsang Park;Seungdo Park
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.1
    • /
    • pp.5-14
    • /
    • 2023
  • In this study, the load transfer characteristics of the base and skin of drilled shafts were analyzed and the load sharing ratio was calculated by performing a load transfer large-scale model test and three-dimensional numerical analysis considering the similarity of drilled shafts, which is the design target. From the linear behavior of drilled shafts shown in the large-scale model test and 3D numerical analysis results, the skin load transition curve for the design conditions of this study was proposed by Baquelin et al., and the base load transition curve was proposed by Baquelin et al. For the horizontal load transition curve, the formula proposed by Reese et al. was confirmed to be appropriate. The test value was slightly larger than the numerical analysis value for the axial load at the rock socketing, but the load sharing ratio at the rock socketing increased, on average, about 27.8% as the vertical load increased. The analysis value of the vertical settlement of the pile head under the vertical load was evaluated to be slightly smaller than the test value, and the maximum vertical settlement of the pile head in the model test and analysis maximum vertical load was 10.6 mm in the test value and 10.0 mm in the analysis value, and the maximum vertical settlement value at the base of the pile was found to be a test value of 2.0 mm and an analysis value of 1.9 mm. The horizontal displacement at the head of the column (ground surface) and the head of the pile during the horizontal load was found to agree relatively well with the test value and the analysis value. As a result of the model soil test, the horizontal load measured at the maximum horizontal displacement of 38.0 mm was evaluated to be 24,713 kN, and the horizontal load in the numerical analysis was evaluated to be 26,073 kN.

An Analysis on the Productivity Depreciating Factor of Cast-In-Place Piles Work (현장(現場)타설 콘크리트 말뚝공사의 생산성(生產性) 저하요인 분석(分析))

  • Lee, Myung-Do;Lee, Hyun-Seok;Seo, Jang-Woo;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.133-139
    • /
    • 2008
  • Productivity is an important factor of the construction's success and growth. However, compared to the other industries, the study of productivity in the construction industry is still insufficient. Even though the Cast-in-Place piles work is also important in construction process, the research on the productivity is not enough. So, it is necessary for the systematic research on the productivity of Cast-In-Place Piles Work. Therefore, the purpose of the study is to classify lower productivity's cause and find a way to improve these situations. This study will give the checklist for the further study of factoring and improvement of the Cast-in-Place piles work productivity.

  • PDF

The Study on The Evaluation of The Ground Vibration of Cast in Place Concrete Pile Method Effect to Precision Equipment (현장타설 말뚝 공법의 지반진동이 정밀장비에 미치는 영향성 평가)

  • Hong, Byung-Kuk;Kim, Young-Chan;Jang, Kang-Seok;Yoon, Je-Won;Sim, Sang-Deok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.97-102
    • /
    • 2011
  • The size of TV and TFT-LCD are bigger and bigger for the next generation exposure equipment install that existing fab are getting a lot of additions. When the new fab build an extension that the shortening of the construction and non-vibration are use cast in place concrete pile method. In this study when lay the foundation of existing fab adjoin use vibration monitoring system are rotator type all casing method among cast in place concrete pile method. The evaluation of ground vibration of rotator type all casing method effect to precision equipment and vibration area of influence.

  • PDF

Modeling of Real-time Concrete Compressive Strength Reduction Management System According to Water Reducing Ratio (감수율에 따른 실시간 콘크리트 압축강도 저하 관리시스템 모델링)

  • Kim, Joon-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.107-109
    • /
    • 2022
  • 본 논문은 건설구조물 안전의 가장 중요한 요소 중 하나인 콘크리트 압축강도 안정성을 확보하기 위한 시스템으로, 콘크리트 구조물을 만들 재료인 레미콘의 수분 감소율에 따른 압축강도 감소 리스크를 관리할 수 있는 모델을 제시하였다. 동일한 물,시멘트비(W/C)로 생산된 레미콘은 현장타설시까지 교통환경으로 인한 도착시간 지연 및 강우, 강설 등 외부적인 요건으로 감수율이 발생하는 리스크가 발생한다. 이로 인해 콘크리트의 압축강도가 저감하는 중대한 문제가 발생한다. 본 연구에서 제시한 알고리즘을 이용하여 현장 타설전 콘크리트 시료의 함수율을 측정하여 감수율이 발생한 제품 발견시, 실시간으로 Operator로 GCM 기반의 Push Alarm을 전송하여 감수율이 반영된 제품을 제공함으로써 구조물의 안전성을 확보할 수 있는 시스템을 모델링하였다. 본 연구는 기존시스템의 문제점을 실시간으로 개선할 수 있는 것으로 건설현장의 구조물 안정성 확보에 효과가 클 것으로 기대된다.

  • PDF

A Field Construction of PSC Girders with 60MPa Cast-in-Place High-Strength Concrete (60MPa급 현장 타설 고강도 PSC 거더의 시험 시공)

  • Min, Kyung-Hwan;Yang, Jun-Mo;Cheong, Hai-Moon;Ahn, Tae-Song;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.405-408
    • /
    • 2008
  • The most effective factors that improve sections and elongate spans of the prestressed concrete girders are shapes of sections and strengths of concretes, and the concrete strength is more influenced to enhance the allowable tensile strength on top and bottom fibers than increasing of flexural strength of girders. In this study, 60 MPa high-strength prestressed concretes were constructed at the Wonsoo Bridge where in the 1st section of expanding constructions of the Nonsan to Junjoo Expressway, the high-strength concrete was placed on the eight- 35 meters simple span IPC girders of four lanes of Nonsan direction. During casting of girder concretes, quality controls were carried out with continuing controls of surface moistures and corrections of the unit water using the air-meter methods right after batching. It was confirmed that compressive strengths of girder concretes ensure the target strength and the heat of hydrations of girder concrete were measured. Though using same materials and constructing methods, there're a wide range of strengths of each girder, so, when high-strength concretes cast in the place hereafter, a countermove should be prepared.

  • PDF

Behavior of Steel Box Girder Bridge According to the Placing Sequences of Concrete Slab (II) (강합성 상자형 교량의 바닥판 타설에 따른 거동 연구(II) - 해석적 연구 및 균열제어 -)

  • Kwak, Hyo Gyoung;Seo, Young Jae;Jung, Chan Mook;Park, Young Ha
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.133-142
    • /
    • 2000
  • This study deals with behavior of steel box girder bridges according to the concrete slab casting sequences and sectional types. The time dependent behavior of bridges caused by the differential setting of slab concrete resulting from time gap for each part of slab deck in a sequential placing method produces is analyzed. In correlation studies between girder section types and placing sequences, time dependent effects of concrete creep and shrinkage are implemented in the analytical model proposed in the previous study. Finally, field recommendations in terms of concrete slump and relative humidity are suggested to prevent early transverse cracking of concrete slabs.

  • PDF