• Title/Summary/Keyword: 현장압축강도

Search Result 536, Processing Time 0.023 seconds

Inspection Method Validation of Grouting Effect on an Agricultural Reservoir Dam (농업용 저수지 제체에서의 그라우팅 주입효과 확인방법의 검증)

  • Kim, Hyeong-Sin;Moon, Seong-Woo;Leem, Kookmook;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.381-393
    • /
    • 2021
  • Physical, mechanical, hydraulic, and geophysical tests were applied to validate methods of inspecting the effectiveness of grouting on an agricultural reservoir dam. Data obtained from series of in situ and laboratory tests considered four stages: before grouting; during grouting; immediately after grouting; and after aging the grouting for 28 days. The results of SPT and triaxial tests, including the unit weight, compressive strength, friction angle, cohesion, and N-value, indicated the extent of ground improvement with respect to grout injection. However, they sometimes contained errors caused by ground heterogeneity. Hydraulic conductivity obtained from in situ variable head permeability testing is most suitable for identifying the effectiveness of grouting because the impermeability of the ground increased immediately after grouting. Electric resistivity surveying is useful for finding a saturated zone and a seepage pathway, and multichannel analysis of surface waves (MASW) is suitable for analyzing the effectiveness of grouting, as elastic velocity increases distinctly after grouting injection. MASW also allows calculation from the P- and S- wave velocities of dynamic properties (e.g., dynamic elastic modulus and dynamic Poisson's ratio), which can be used in the seismic design of dam structures.

A Study on the Reinforcement Effect of Low Flow Mortal Injection Method Using Field Test (현장시험을 이용한 저유동성 몰탈주입공법의 보강효과에 관한 연구)

  • Junyeong Jang;Gwangnam Lee;Daehyeon Kim
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.599-609
    • /
    • 2023
  • In the seismic retrofitting of harbor breakwaters in Korea, the recovery rate is often uncertain due to site conditions and site conditions, and problems continue to arise. Therefore, in this study, we analyzed the recovery rate and compressive strength of the improved material through drilling survey by grouting confirmation method after applying low-fluidity mortar injection method, and furthermore, we checked the elastic modulus by downhole test and tomography to confirm the reinforcement effect of soft ground after ground improvement. The experimental results showed that the average shear wave velocity of the ground increased from 229 m/s to 288 m/s in BH-1 and BH-3 boreholes to a depth of 28.0 m, and the average shear wave velocity of the ground to a depth of 30.0 m tended to increase from 224 m/s to 282 m/s in the downhole test. This is believed to be a result of the increased stiffness of the ground after reinforcement. The results of the tomographic survey showed that the Vs of the soft ground of the sample at Site 1 increased from 113 m/s to 214 m/s, and the Vs of the sample at Site 2 increased from 120 m/s to 224 m/s. This shows that the stiffness of the ground after seismic reinforcement is reinforced with hard soil, as the Vs value satisfies 180 m/s to 360 m/s in the classification of rock quality according to shear wave velocity.

An Experimental Study on the Hydration Heat of Concrete Using Phosphate based Inorganic Salt (인산계 무기염을 이용한 콘크리트의 수화 발열 특성에 관한 실험적 연구)

  • Jeong, Seok-Man;Kim, Se-Hwan;Yang, Wan-Hee;Kim, Young-Sun;Ki, Jun-Do;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.6
    • /
    • pp.489-495
    • /
    • 2020
  • Whereas the control of the hydration heat in mass concrete has been important as the concrete structures enlarge, many conventional strategies show some limitations in their effectiveness and practicality. Therefore, In this study, as a solution of controling the heat of hydration of mass concrete, a method to reduce the heat of hydration by controlling the hardening of cement was examined. The reduction of the hydration heat by the developed Phosphate Inorganic Salt was basically verified in the insulated boxes filled with binder paste or concrete mixture. That is, the effects of the Phosphate Inorganic Salt on the hydration heat, flow or slump, and compressive strength were analyzed in binary and ternary blended cement which is generally used for low heat. As a result, the internal maximum temperature rise induced by the hydration heat was decreased by 9.5~10.6% and 10.1~11.7% for binder paste and concrete mixed with the Phosphate Inorganic Salt, respectively. Besides, the delay of the time corresponding to the peak temperature was apparently observed, which is beneficial to the emission of the internal hydration heat in real structures. The Phosphate Inorganic Salt that was developed and verified by a series of the aforementioned experiments showed better performance than the existing ones in terms of the control of the hydration heat and other performance. It can be used for the purpose of hydration heat of mass concrete in the future.

Prediction of the Elastic Modulus of Improved Soil Using the Flat TDR System (판형 TDR 시스템을 이용한 개량지반의 탄성계수 예측)

  • Song, Minwoo;Kim, Wanmin;Kim, Daehyeon;Choi, Chanyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.3
    • /
    • pp.77-85
    • /
    • 2016
  • This study was conducted to solve the problem such as damage of completed compaction ground using the conventional compaction control method. In this study, a TDR system equipped with a flat type probe has been developed. Also, the Piezoelectric stack, which is an instrument for measuring the elastic wave on the ground, has been added to the developed flat type probe. In this study, the strength variation of reinforced soil with time was determined by using the TDR system. The value of compression and shear modulus increased from 198.65MPa to 541.80MPa and from 125.55MPa to 302.02MPa with time, respectively. Based on the test results, it has been confirmed that the developed TDR system can be used as reinforced effect analysis of soil and compaction control.

원전고화폐기물 특성시험을 위한 시험법 선정방법

  • Kim, Gi-Hong;Yoo, Yeong-Geol;Hong, Gwon-Pyo;Jeong, Ui-Yeong;Park, Jong-Heon;Kim, Heon
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.219-221
    • /
    • 2004
  • 국가의 규제기관과 처분장에서는 방사성 폐기물의 안전한 영구처분을 위하여 폐기물 수용(인수)기준을 폐기물 발생자에게 준수토록 요구하게 되는데 이러한 폐기물 수용(인수)기준은 처분시설의 가동동안 인간과 환경 보호 그리고 최대 300년간의 제도적 통제기간을 고려하여 처분장의 안전성 확보를 위하여 설정되어진다. 폐기물 수용(인수)기준중 고화체의 안정성 평가와 관련하여 미국(NRC/BTP)은 폐기물의 종류와 고화매질에 따라 유리수, 압축강도, 방사성 조사특성, 미생물 영향 특성, 침수 및 침출 특성, 열순환 특성 등에 대하여 표준시험법을 제시하였으며, 또한 그의 기술기준치도 제시하고 있다. 그리고 프랑스(DRDD/ BECC)에서는 미국보다 매우 세밀하게 평가항목들을 분류하는 등의 처분장 운영국가에서는 고화체의 안정성관련 평가시험들을 처분 환경과 처분방식에 맞게 표준화하고 있다. 한편 국내에서는 과기부 고시 제2001-32호 "중.저준위 방사성폐기물 인도규정"이 있으나 이에는 고화체 관련하여 정성적인 안정성에 대하여서만 기술되어 있다. 이에 따라 원전폐기물 고화체에 대한 안정성 평가를 위한 시험법을 선정하기 위하여 아래 그림과 같은 절차에 따라 수행토록 하였다. 우선 대표적인 천층처분 운영국가인 미국과 프랑스의 시험법 그리고 IAEA 권고 시험법과 유사관련 한국 산업표준법들을 조사하고, 이들 시험법들의 주요 차이점을 기술적 관점에서 비교평가하고, 이어서 모의 방사성 및 비방사성 고화체를 이용하여 상기 시험법들을 각각 적용하고 또한 이들 시험법들간의 차이(시험 조건, 시편의 크기 등)에 기인한 상호 비교시험을 통하여 얻어진 시험결과들을 종합적으로 비교 검토하여 보수적 관점에서 시험법을 선정하는 것으로 방향을 잡았다. 이때 시험결과를 얻기 위한 모든 과정에 품질보증 활동을 적용키로 하였으며, 시험결과 분석/평가 과정과 시험법 선정에 각계(규제기관, 학계, 발전소 현장 및 산업계 등) 전문가로부터 기술자문회의를 통하여 자문 의견을 받기로 하였다. 특히 현재 폐기물 인수 기술기준치가 설정된 국가의 시험법을 심층 있게 검토하기로 하였다.검토하기로 하였다.

  • PDF

A Study on the Damage to a Concrete Bridge Pier due to Fire (화재를 입은 콘크리트 교각의 손상에 관한 연구)

  • 윤우현
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.2
    • /
    • pp.117-125
    • /
    • 1995
  • In this study, the damage to a concrete br~dge pier due to flre caused by the fall of an oil truck were investigated by the use of FEM and by tensile tests for reinfortements. And thtse results were analyzed and compared with the measured values. In the FEM calculations, the selected variable was the fire temperature $T_a=500-800^{\circ}C$. The fixed values were the heat transition coefficient ${\alpha}=2000W/m^2{\cdot}K$. the initial temperature of concrete $T_0=5{\circ}C$ and the fire duration t=30 minutes. As the results obtained from numerical calculations, the property darrlage zone ap,)eared to be 1.5-4.1cm and the structure damage zone appeared to be 8.7- 10.1cm from the concrete surface. And this results give values very similar to those measured, nanlelv 2-4cm and 8~10cm respectively. The results frorn tensile tests give no serious loss of the tensile strength.

Structural Behavior of Flexurally Reinforced FRP-Concrete Composite Compression Member with FRP (FRP로 휨보강된 FRP-콘크리트 합성압축재의 구조적 거동)

  • Park, Joon-Seok;Joo, Hyung-Joong;Nam, Jeong-Hun;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.10-16
    • /
    • 2010
  • In construction industries, new construction materials are needed to overcome some problems associated with the use of conventional construction materials due to the change of environmental and social requirements. Accordingly, the requirements to be satisfied in the design of civil engineering structures are diversified. As a new construction material in the civil engineering industries, fiber reinforced polymeric plastic (FRP) has a superior corrosion resistance, high specific strength/stiffness, etc. Therefore, such properties can be used to mitigate the problems associated with the use of conventional construction materials. Nowadays, new types of bridge piers and marine piles are being studied for new construction. They are usually made of concrete filled fiber reinforced polymeric plastic tubes (CFFT). In this paper, a new type of FRP-concrete composite pile which is composed of reinforced concrete filled FRP tube (RCFFT) is proposed to improve compressive strength as well as flexural strength. The load carrying capacity of proposed RCFFT compression member is discussed based on the result of experimental and analytical investigations.

  • PDF

A Study on the Verification Test for a Deformable Rod Sensor (변형봉 센서 검증실험에 관한 연구)

  • 김상일;최용규;이민희
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.35-47
    • /
    • 2003
  • In the conventional axial load transfer analysis for composite piles (i.e., steel pipe pile filled with concrete), it was assumed that the concrete's strain is same as the measured steel's strain and the elastic modulus of the steel and the concrete calculated by formular as prescribed by specification is used in calculation of pile axial load. But, the pile axial load calculated by conventional method had some difference with the actual pile load. So, the behavior of a composite pile could not be analyzed exactly. Thus, the necessity to measure the strain for each pile components was proposed. In this study, the verification test for DRS (Deformable Rod Sensor) developed to measure the strain of each pile component (i.e., the steel and the concrete) was performed. In the calculation of pile axial load using the DRS, elastic modulus of concrete could be determined by the uniaxial compression test for the concrete cylinder samples made in the test site and an average tangential modulus in the stress range of (0.2∼0.6)f$_ck$ was taken.

Compressive Strength Properties of Concrete Using High Early Strength Cement and Recycled Aggregate with Steam Curing Conditions (조강시멘트와 순환골재를 적용한 콘크리트의 증기양생조건별 압축강도 특성)

  • Kim, Yong-Jae;Kim, Seung-Won;Park, Cheol-Woo;Sim, Jong-Sung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.76-81
    • /
    • 2016
  • Recycled aggregate is a valuable resource in Korea in lack of natural aggregate. Government recognizes the importance and suggests various policies enhancing its use for higher value-added application. Most of recycled aggregate produced currently in Korea, however, is applied for low value-added uses such as embankment, reclamation, etc. Its higher valued application such as for structural concrete is very limited. Although domestic manufacturing technology of recycled aggregate is at the world level, recycled aggregate is not applied for structural concrete. Primary reasons for the limited use of the recycled aggregate include bonded mortar and cracks occurred during crushing and hence it is very difficult to predict and control the quality of recycled aggregate concrete. This research intended to grasp combined characteristics of recycled aggregate, high early strength cement, maximum temperature and time duration of steam curing and then, analyze the effects of factors. Also, it suggested the method to improve field applicability of recycled aggregate concrete.

Development of the Environmentally Friendly Filling Material for the Underground Cavities using the Rock-dust and an Assessment on Filling and Material Characteristics (석분토를 이용한 지하공동의 친환경적 충전재 개발과 충전 및 재료특성 평가)

  • Ma Sang-Joon;Kim Dong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.35-44
    • /
    • 2005
  • Recently, underground cavities such as limestone cavity and abandoned mine give rise to a lot of damage in SOC facilities. But there are many difficult problems such as delay of the working terms and enormous economic losses in finding a new method and changing construction design. In this study, a new filling material for underground cavities was developed using the stone-dust classified as industry waste polluting environment. As a result of test, filling material properties was that a compressive strength was $34{\~}60\;kgf/cm^2$, a change ratio in length was $0.268{\~}0.776\%$ and water absorption was $34.3{\~}46.9\%$. Also as a result of suspended mass test and pH test, it was confirmed that the developed filling material has a characteristic of non-separating in water and it was an environmentally friendly material.