• Title/Summary/Keyword: 현가계요소

Search Result 9, Processing Time 0.028 seconds

Modal Analysis of Suspension System with Kinematic Constraints and Elastic Elements (기구학적 구속조건과 탄성요소를 가진 현가계의 모드해석)

  • 이장무;강주석;윤중락;배상우;탁태오
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.110-123
    • /
    • 2000
  • In this Study, the dynamic equation for vibration analysis of mechanical systems with kinematic constraints is derived. This equations are derived in terms of small displacements of Cartesian coordinates, and are applied to compute the dynamic response and the natural modes of the suspension system of a vehicle. The results are validated through the comparison with the results from conventional nonlinear dynamic analysis and modal test.

  • PDF

A Study on the displacement characteristics of suspension elements for KTX (고속철도차량 현가계요소 변위특성 연구)

  • Hur H.M.;Kwon S.T.;Lee C.W.;Kim H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.378-382
    • /
    • 2005
  • The opening of high speed railway upgraded our land transportation speed limit, causing lots of changes including living and culture and also paving the way for stepping up the railway technology. However, it is also true that we had a limit to adopt the existing railway system structured for 150km/h to the new structure requiring a higher speed of approximate 300km/h due to technological, based on the time and experience. More importantly, heading toward a step of operating such a high speed railway system, it has been practically and quickly proposed that the railway needs high speed railway engineering, maintenance technology of parts of the vehicles to have a stable maintenance foundation and localization of major parts. Therefore, this study was intended to research the actual displacement characteristics in runningg on an actual track for the purpose of developing the protective and maintenance technology of springs and dampers, which are core parts among suspension elements of a high speed railway vehicle. For this, it was researched the actual vehicle test and its interpretation centered on primary spring, which is used for the suspension system of a bogie, body-body dampers and body-bogie yaw damper. Also, to analyze the displacement characteristics of suspension system in the actual conditions of high speed railway vehicles, a vehicle‘s dynamic characteristics was analyzed and interpreted. At the same time, a tester for measuring the actual displacement of such suspension elements was designed and attached to actual vehicles, to measure the displacements that occur in running it on the Seoul-Busan line, one of major lines serviced by KTX. The displacement data gained from the test with actual vehicles was analyzed for its displacement distribution depending on the service sections and frequency, with which the valuable data necessary for any potential breakdown or maintenance in the future could be obtained.

  • PDF

Computer Simulation of Dynamic Response of Vehicles on Rough Ground (노면가진에 의한 차체의 동적거동에 관한 연구)

  • 조선휘;이건우;박종근;조병관;송성재;한규진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.419-425
    • /
    • 1988
  • It would be very useful if the dynamic response of a vehicle over rough ground could be predicted at the early design stage. This became more promising with the recent progress in computer hardware and software technologies. In this study, a model of a passenger car has been developed for the analysis of its dynamic response. This model can be easily used for the other passenger cars with little modification. This passenger car was modeled to be composed of lumped masses, rigid bodies, and the suspension systems with nonlinear properties. Even though a commercial dynamic simulation program, ADAMS, was used in this study, the developed model is valid for any other simulation program. Finally, the validity of the developed model and the analysis result was verified by an experiment.

A Study on Diagnostic Method for Suspension Elements of Bogie (대차 현가계 구성요소 진단방법에 관한 연구)

  • 허현무;최경진
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.476-483
    • /
    • 2000
  • Like other vehicles, the suspension elements of railway rolling stock have influence on running stability and ride quality. Thus, faults detection for suspension elements is important to prevent an accidents of train and to ensure safety against derailment. This study was started to grasp the feasibility of diagnostic method for the suspension elements of bogie without disassembling. Through several tests by running test rig, we found that fault detection for suspension elements was possible. Here, we describe some results.

  • PDF

Prediction of Dynamics of Bellows in Exhaust System of Vehicle Using Equivalent Beam Modeling (등가 보 모델링 방법을 이용한 차량 배기계의 벨로우즈 동특성 예측)

  • Hong, Jin Ho;Kim, Yong Dae;Lee, Nam Young;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1105-1111
    • /
    • 2015
  • The exhaust system is one of the major sources of vibrations, along with the suspension system and engine. When the exhaust system is connected directly to the engine, it transfers vibrations to the vehicle body through the body mounts. Therefore, in order to reduce the vibrations transmitted from the exhaust system, the vibration characteristics of the exhaust system should be predicted. Thus, the dynamic characteristics of the bellows, which form a key component of the exhaust system, must be modeled accurately. However, it is difficult to model the bellows because of the complicated geometry. Though the equivalent beam modeling technique has been applied in the design stage, it is not sufficiently accurate in the case of the bellows which have complicated geometries. In this paper, we present an improved technique for modeling the bellows in a vehicle. The accuracy of the modeling method is verified by comparison with the experimental results.

Development of a Real-Time Vehicle Dynamic Simulation Software (실시간 차량 동역학 시뮬레이션 S/W 개발)

  • Choi, G.J.;Lee, K.H.;Yoo, Y.M.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.30-37
    • /
    • 1995
  • In this research a real time vehicle dynamic simulation software, to be used on real time vehicle simulators, is developed using relative coordinates and suspension super-element concept. Accuracy of the software is verified through comparisons of simulation results with those of a commercial mechanical system dynamic analysis package. It is demonstrated that real time simulation on a workstation with a 15 D.O.F. vehicle model is possible.

  • PDF

The Study on noise Analysis of Bush on Suspension System (현가계 부쉬 이상소음 분식에 관한 연구)

  • Bae, Chul-Yong;Lee, Dong-Won;Kim, Chan-Jung;Lee, Bong-Hyun;Na, Byung-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.69-74
    • /
    • 2006
  • It is known that the various noise sources which are engine, transmission, tire, intake system, etc exist at vehicle driving status. Specially noises which cannot be expected by a driver induce unpleasantness to all passengers. These noises are difficult to distinguish noise sources or specifications because of too many vehicle parts. Therefore in this paper, study on abnormal noise of bush on suspension system is performed by the measurement and analysis of the noises of bushings that are generated artificially. The measured noises are analyzed by two points-view of spectrum and sound quality. Finally, it is shown that the noise sources of bushings on the suspension system which are the pillow ball joint bush of a control arm and the rubber bush of a lower arm could be distinguished by the spectrum distribution and a index value based on tonality.

  • PDF

Prediction of Structural Performance of an Automotive Ball Joint (자동차용 볼조인트의 구조적 성능 예측)

  • Kim, Seong-Uk;Jeong, Gyeong-Il;Lee, Kwon-Hee;Lee, Dong-Jin;Lee, Myeong-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.705-713
    • /
    • 2018
  • An automotive ball joint connects the suspension system to the steering system and helps to enable rotational and linear motion between the two elements for steering. This study examines a ball joint used in medium and large-sized pickup trucks. Ball joints consist of a stud, socket, bearing, and plug. The main structural performance metrics of ball joints are the pull-out strength and push-out strength. These structural parameters must meet certain criteria to avoid serious accidents. Test and simulation methods are used to investigate the design requirements, but tests are time-consuming and costly. In this study, we modeled ball joints in SolidWorks and performed a finite element analysis in Abaqus to predict structural performance. The analysis was used to obtain the structural performance required for the static analysis of a 2D axisymmetric model. The uncertainties in the manufacturing of the ball joint were assumed to be the manufacturing tolerances, and the dimensional design variables were identified through case studies. The manufacturing tolerances at each level were defined, and the results were compared with experimental results.

Structural Design of the Outer Tie Rod for an Electrical Vehicle (전기 자동차용 아우터 타이로드의 구조설계)

  • Seo, Bu-Kyo;Kim, Jong-Kyu;Lee, Dong-Jin;Seo, Sun-Min;Lee, Kwon-Hee;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4171-4177
    • /
    • 2013
  • Outer tie rod is lighter than other, but there is the trend item weight and the number is increasing due to vehicle performance improvement. Thus, to improve vehicle fuel efficiency, weight lightening is essential. Therefore, this research performed the finite element analysis to investigate the structural performance of the outer tie rod for an electrical vehicle. This study was performed as the preliminary study for a lightweight design of the outer tie rod. The weight of outer tie rod was optimized by adopting the steel material and applying the trial and error method. The strengths due to durability and buckling should be considered in the structural design of an outer tie rod. Furthermore, the meta model-based optimization was applied to obtain its lightweight design, leading to 9 % weigh reduction.