• Title/Summary/Keyword: 헬리콥터 로터 소음

Search Result 45, Processing Time 0.032 seconds

Development of a Helicopter Rotor Test Rig and Measurement of Aeroacoustic Characteristics (헬리콥터 로터 시험장치의 개발 및 공력소음특성의 측정)

  • Rhee, Wook;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.10-16
    • /
    • 2004
  • In this paper the aeroacoustic characteristics of a helicopter main rotor system is measured by using a pair of scaled rotor blades. A low noise rotor test jig is developed for noise measurement and the rotational speed, thrust and torque are measured simultaneously in order to match the aerodynamic conditions with the full scale rotor. The accuracy of the force measurement device was checked through a calibration procedure. The measured thurst and torque with a 1.2m rotor are compared to the results of analytical prediction and showed that the thrust data at various rotational speed followed the prediction relatively well, but the torque data considered less accurate. It is also found that the background noise level of the test rig is sufficiently low, and the measured noise level from the rotor can be scaled with rotor tip speed. However, the Mach number dependancy and the directivity changes depend on the noise source characteristics.

Comparison of Discrete Noise with Broadband Noise from Small-scaled UH-1H Rotor (축소형 UH-1H 로터에서의 광역소음과 이산소음의 비교)

  • Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.20-25
    • /
    • 2005
  • The thickness, loading, and broadband noise generated from the trailing edge of the UH-1H main rotor are numerically compared each other. The Kocureck and Tangler's prescribed wake model is adopted to represent the wake geometry during the hovering motion. Three tip Mach numbers of $M_{T}$ = 0.2, 0.4, and 0.8, are selected to analyze the effects of different tip Mach numbers. At $M_{T}$ = 0.8, in considering the A-weighting and audible frequency band, the random noise is smaller than the tonal noises such as the thickness and the loading noise which have the low frequency characteristics. Especially most of the random noise frequency spread on the ultrasound region. On the other hand, below $M_{T}$ = 0.4, the band of random noise moves to the audible frequency region, and the random noise becomes larger than the tonal noise. It turns out that the random noise analysis of the rotor should be necessary at low speed operating condition.

Aerodynamic Noise Prediction of a Helicopter Rotor Blade for the Flight Conditions of Approach and Flyover (비행 조건 별 헬리콥터 로터 블레이드 공력 소음 예측)

  • Wie, Seong-Yong;Kang, Hee Jung;Kim, Deog-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.8
    • /
    • pp.671-678
    • /
    • 2018
  • Helicopter noise prediction is an essential process for developing low noise helicopter technology. In this paper, the noise prediction method is developed using the helicopter integrated performance analysis program CAMRAD-II and in-house noise analysis code. In addition, the analytical technique was verified by analyzing blade-vortex interaction noise, which is the biggest cause of helicopter noise. In order to predict the actual helicopter noise, the noise analysis was performed for the flyover and approach condition, which is the standard measurement condition of the International Civil Aviation Organization (ICAO). Finally, we confirmed the suitability of the analytical method through comparison and analysis with the flight test results.

Validation of Rotor Aeroacoustic Noise in Hovering and Low Speed Descent Flight (정지 및 저속 하강 비행하는 헬리콥터 로터의 소음 해석 및 검증)

  • You, Younghyun;Jung, Sung Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.516-525
    • /
    • 2015
  • In this paper, the acoustic pressure of a helicopter rotor in hovering and low speed descent flight is predicted and compared with experimental data. Ffowcs Williams-Hawkings equation is used to predict the acoustic pressure. Two different wind tunnel test data are used to validate the predicted results. Boeing 360 model rotor test results are used for the low-frequency noise in hover, and HART II test results are employed for the mid-frequency noise, especially BVI noise, in low speed descent flight. A simple free-wake model as well as the state-of-the-art CFD/CSD coupling method are adopted to perform the analysis. Numerical results show good agreement against the measured data for both low-frequency and mid-frequency harmonic noise signal. The noise carpet results predicted using the FFT(Fast Fourier Transform) shows also reasonable correlation with the measured data.

Comparisons of Rotor Performance and Noise between Candidate Light Civil Helicopters (민수헬기 대상기종 로터 공력성능 및 소음 비교)

  • Chung, Kihoon;Kang, Hee Jung;Kim, Do-Hyung;Yun, Chul Yong;Kim, Seungho;Park, Kuhwan;Lee, Sang-Gi
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.726-733
    • /
    • 2013
  • The rotor blade of helicopter is the core component determining helicopter performance and requiring low noise and low vibration because the blade becomes the major source of noise during flight. The performance analysis of candidates rotor blades is very critical because LCH(Light Civil Helicopter) will be developed parallel with LAH(Light Armed Helicopter) as an international upgrade program based on the existing platform of foreign civil helicopter. This research was aimed to recognize the performance of the candidates rotor blades compared with the newly developed foreign rotor blades and to investigate the feasibility about developing korea unique shape rotor blades by analysis the rotor performance and noise. The result of this research can be used for the target performance index during negotiation with foreign helicopter company and developing korea unique shape rotor blades.

Technology Trend of Vibration/Noise Active Control in Helicopter (헬리콥터 능동 진동/소음 제어 기법 해외 동향 및 사례)

  • Kim, Deog-Kwan;Yun, Chul-Yong;Chung, Ki-Hoon;Kim, Seung-Ho
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.9 no.1
    • /
    • pp.77-89
    • /
    • 2011
  • The vibration and noise reduction issue is very important in helicopter since the thrust and flight control force of helicopter are generated by rotating drive system. In past, there was a passive method to reduce vibration and noise to focus on specified frequency. Now, there are various active method to reduce vibration and noise due to technology development. This paper describes the worldwide technology trend of vibration and noise active control in helicopter. At introduction, generalmethod of vibration and noise reduction.

  • PDF

Rotating Frequency Analysis of a Helicopter Rotor Blade with Swpt Tips (후퇴각 날개끝이 있는 헬리콥터 로터깃의 회전주파수 해석)

  • ;Yang, Wei Dong
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.229-239
    • /
    • 2000
  • To reduce the drag rise on the advancing helicopter rotor blade tips, the tip of the blade is modified to have sweep, anhedral and pretwist. The equations of motion of rotor blade with these tip angles were derived using Hamilton principle, programmed using FORTRAN and named as ARMDAS(Advanced Rotorcraft Multidisplinary Design and Analysis System). Rotating frequency analysis of rotor blades with swept tipe was performed that is necessary in conceptual and preliminary design phases of the helicopter design. Vibration analysis of non-rotating blades was also accomplished and compared with MSC/NASTRAN resutls for the basis of comparison with the vibration test data. The rotating frequency analysis of blades with an actual rotor blade data was also performed to verify coded program and to check the possibility of a resonance of an actual rotor blade at the specific rotating speed.

  • PDF

Dynamic Characteristic Analyses of a Bearingless Helicopter Rotor Systems (무베어링 헬리콥터 로터 시스템의 동특성 해석)

  • Kee, Young-Jung;Yun, Chul-Yong;Kim, Seung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.52-56
    • /
    • 2011
  • Recently, KARI(Korea Aerospace Research Institute) has been developing a modern 11.5m diameter four bladed bearingless main rotor system, and this rotor system can be used for 7,000lb class helicopter. Flexbeam and torque tube can be considered as the key structural components, and large elastic twist of flexbeam induced by pitch control motion of torque tube can influence the nonlinear aeroelastic behavior. In this paper, the dynamic characteristic analysis results of bearingless rotor system were presented. In order to construct a input model and validate the analysis procedures, calculated results using the comprehensive helicopter analysis program CAMRAD II were compared with the measured natural frequencies and lag damping data from small-scale wind tunnel test. Next, the analysis model was extended to a full-scale model, and the dynamic analysis results were presented.

  • PDF