• Title/Summary/Keyword: 헬름홀쯔

Search Result 54, Processing Time 0.024 seconds

Design and Fabrication of Improved Null-Type Torque Magnetometer (개선된 구조의 Null-Type 토크마그네토미터의 설계 및 제작)

  • Kim, Dong-Hyun;Shin, Sung-Chul;Hur, Jeen
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.6
    • /
    • pp.388-394
    • /
    • 1998
  • We designed and fabricated an improved null-type torque magnetometer for measuring magnetic anisotropy of magnetic materials. This torque magnetometer has a measurement range of $~{\pm}15$ dyne.cm, and the range can be controlled. Resolution is ~0.0005 dyne.cm. Noise level is less than 0.01 dyne.cm with one measurement, and less than 0.004 dyne.cm with 10 averaged measuremets. The precision is less than 0.5 %. In contrast to typical null-type torque magnetometers, we placed a small ferrite magnet in the Helmholtz coil, instead of placing coil in the permanent magnet. From this novel sturucture, we can design a geometrically isotropic and relatively light-weight sample rod. Also, we can prevent the effect of input and output lines of coil exposed in the magnetic field in torque meter. Consequently, our novel null-type torque magnetometer can have a better sensitivity, faster response time, and smaller distortion of torque curve than commercially available torque magnetometers.

  • PDF

A Study for Improving Computational Efficiency in Method of Moments with Loop-Star Basis Functions and Preconditioner (루프-스타(Loop-Star) 기저 함수와 전제 조건(Preconditioner)을 이용한 모멘트법의 계산 효율 향상에 대한 연구)

  • Yeom, Jae-Hyun;Park, Hyeon-Gyu;Lee, Hyun-Suck;Chin, Hui-Cheol;Kim, Hyo-Tae;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.169-176
    • /
    • 2012
  • This paper uses loop-star basis functions to overcome the low frequency breakdown problem in method of moments (MoM) based on electric field integral equation(EFIE). In addition, p-Type Multiplicative Schwarz preconditioner (p-MUS) technique is employed to reduce the number of iterations required for the conjugate gradient method(CGM). Low frequency instability with Rao Wilton Glisson(RWG) basis functions in EFIE can be resolved using loop-start basis functions and frequency normalized techniques. However, loop-star basis functions, consisting of irrotational and solenoidal components of RWG basis functions, require a large number of iterations to calculate a solution through iterative methods, such as conjugate gradient method(CGM), due to high condition number. To circumvent this problem, in this paper, the pMUS preconditioner technique is proposed to reduce the number of iterations in CGM. Simulation results show that pMUS preconditioner is much faster than block diagonal preconditioner(BDP) when the sparsity of pMUS is the same as that of BDP.

Identification of the Sectional Distribution of Sound Source in a Wide Duct (넓은 덕트 단면내의 음원 분포 규명)

  • Heo, Yong-Ho;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.87-93
    • /
    • 2014
  • If one identifies the detailed distribution of pressure and axial velocity at a source plane, the position and strength of major noise sources can be known, and the propagation characteristics in axial direction can be well understood to be used for the low noise design. Conventional techniques are usually limited in considering the constant source characteristics specified on the whole source surface; then, the source activity cannot be known in detail. In this work, a method to estimate the pressure and velocity field distribution on the source surface with high spatial resolution is studied. The matrix formulation including the evanescent modes is given, and the nearfield measurement method is proposed. Validation experiment is conducted on a wide duct system, at which a part of the source plane is excited by an acoustic driver in the absence of airflow. Increasing the number of evanescent modes, the prediction of pressure spectrum becomes further precise, and it has less than -25 dB error with 26 converged evanescent modes within the Helmholtz number range of interest. By using the converged modal amplitudes, the source parameter distribution is restored, and the position of the driver is clearly identified at kR = 1. By applying the regularization technique to the restored result, the unphysical minor peaks at the source plane can be effectively suppressed with the filtering of the over-estimated pure radial modes.

Simulation of Time-Domain Acoustic Wave Signals Backscattered from Underwater Targets (수중표적의 시간영역 음파 후방산란 신호 모의)

  • Kim, Kook-Hyun;Cho, Dae-Seung;Seong, Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.140-148
    • /
    • 2008
  • In this study, a numerical method for a time-domain acoustic wave backscattering analysis is established based on a physical optics and a Fourier transform. The frequency responses of underwater targets are calculated based on physical optics derived from the Kirchhoff-Helmholtz integral equation by applying Kirchhoff approximation and the time-domain signals are simulated taking inverse fast Fourier transform to the obtained frequency responses. Particularly, the adaptive triangular beam method is introduced to calculate the areas impinged directly by acoustic incident wave and the virtual surface concept is adopted to consider the multiple reflection effect. The numerical analysis result for an acoustic plane wave field incident normally upon a square flat plate is coincident with the result by the analytic time-domain physical optics derived theoretically from a conventional physical optics. The numerical simulation result for a hemi-spherical end-capped cylinder model is compared with the measurement result, so that it is recognized that the presented method is valid when the specular reflection effect is predominant, but, for small targets, gives errors due to higher order scattering components. The numerical analysis of an idealized submarine shows that the established method is effectively applicable to large and complex-shaped underwater targets.