• Title/Summary/Keyword: 헬름홀쯔

Search Result 54, Processing Time 0.021 seconds

Damping Characteristic of Resonator according to Geometry Variation (음향공 형상 변화에 따른 감쇠 특성 변화)

  • Kim, Jai-Ho;Park, Jin-Ho;Yu, I-Sang;Jang, Ji-Hun;Ko, Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.35-38
    • /
    • 2011
  • Damping characteristic according to acoustic cavity's geometries was investigated to control the high frequency combustion instability occurring in the Liquid Rocket Combustion Chamber by experimental test and linear analysis. Its diameter was determined as a design parameter and its orifice length and diameter were appointed as fixed parameter in this study. Result shows that the damping capacity has been almost constant through all the experiments despite using the same orifice and helmholtz resonators which have different volume.

  • PDF

Numerical Simulation of Acoustic Radiation and Fluid/Structure Interaction Based on the Helmholtz Integral Equation (헬름홀쯔 적분 방정식에 기반을 둔 구조물의 음향방사 및 구조/음향 연성 수치해석)

  • Choi, Sung-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.8
    • /
    • pp.411-417
    • /
    • 2008
  • An alternative formulation of the Helmholtz integral equation derived to express the pressure field explicitly in terms of the velocity vector of a radiating surface is used to solve acoustic radiation and fluid/structure interaction problems. This formulation, derived for arbitrary sources, is similar in form to the Rayleigh's formula for planar sources. Because the surface pressure field is expressed explicitly as a surface integral of the surface velocity, which can be implemented numerically using standard Gaussian quadratures, there is no need to use BEM to solve a set of simultaneous equations for the surface pressure at the discretized nodes. Furthermore the non-uniqueness problem inherent in methods based on Helmholtz integral equation is avoided. Validation of this formulation is demonstrated for some simple geometries.

Identification of frequency determining sound generating organ of cicadas with the Helmholtz resonator structure (헬름홀쯔 공명기 구조 매미 소리의 주파수 결정 발음기관 규명)

  • Yoon, Ki-sang;Cho, Se-hyun;Jung, Yoon-sang;Lee, Dong-hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.276-283
    • /
    • 2018
  • The purpose of the study is to identify a sound generating organ that has a major influence on the central frequency of the cicadas with the Helmholtz resonator structure for the first time. The sound of cicadas Cryptotympana atrata and Hyalessa fuscata were recorded and analyzed, then the motion of the tymbals was analyzed with a high-speed camera to compare the relationship between the frequency of sound and the motion of the tymbals. As a result, there was little difference in the frequency distribution of calling song and scream for two species. The tymbals of C. atrata oscillated in three vibration modes, while those of H. fuscata oscillated in one mode. There was no difference in the frequency of both tymbals of both cicadas, and three vibration modes of C. atrata generated sound with different frequency bands. The frequency band of tymbals and the central frequency band of calling song were very similar. In conclusion, it is presumed that the frequency of the cicadas with the Helmholtz resonator structure was determined by mode frequency of the tymbals than resonance condition of the abdomen.

Construction of Large 3-axis Square Helmholtz Coil system for the Power Frequendy Magnetic Field Immunity Test (전원주파수 교류자기장 내성평가용 대형 3-축 사각 헬름홀쯔 코일 시스템 제작)

  • 유권상;김창석;정낙삼
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.905-909
    • /
    • 1995
  • We constructed the large 3-axis square Helmholtz coil system for the power frequency magnetic field immunity test. We measured the coil factors and magnetic field homogeneities of the fabricated 3-axis square Helmholtz coil. The experimental results for the field homogeneities are in agreement with the theoretical data. From these results, we determined the effective areas for the immunity test. We also confirmed that the low current using the multi-turns coil can be applicable to the immunity test for the high field in short duration.

  • PDF

Absorptive Characteristics of a Helmholtz Resonator Damped by a Flexible Porous Screen (유연한 다공성 스크린을 가진 헬름홀쯔 공명기의 흡음특성)

  • Kim, Sang-Ryul;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.865-868
    • /
    • 2005
  • A Helmholtz resonator is one of noise control elements widely used in many practical applications. The resonator has very high absorption at resonance frequency but the frequency bandwidth is very small. Therefore many kinds of additional resistive screens have been applied to the resonator's neck in order to increase the bandwidth. This paper discusses the absorptive characteristics of a Helmholtz resonator damped by a flexible porous screen in form of wire mesh. First, various experimental results are introduced and studied. Secondly, the effect of the resistive screen is theoretically predicted. It is shown that the distance between the screen and aperture affects on the resonance frequency as well as the absorption of the system.

  • PDF

Development of the Direct Boundary Element Method for Thin Bodies with General bBundary Conditions (일반 경계 조건을 가진 얇은 물체에 대한 직접 경계 요소법의 개발)

  • 이강덕;이덕주
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.975-984
    • /
    • 1997
  • A direct boundary element method (DBEM) is developed for thin bodies whose surfaces are rigid or compliant. The Helmholtz integral equation and its normal derivative integral equation are adoped simultaneously to calculate the pressure on both sides of the thin body, instead of the jump values across it, to account for the different surface conditions of each side. Unlike the usual assumption, the normal velocity is assumed to be discontinuous across the thin body. In this approach, only the neutral surface of the thin body has to be discretized. The method is validated by comparison with analytic and/or numerical results for acoustic scattering and radiation from several surface conditions of the thin body; the surfaces are rigid when stationary or vibrating, and part of the interior surface is lined with a sound-absoring material.

  • PDF

A Helmholtz Resonator Array Panel for Low Frequency Sound Absorption (저주파수 흡음을 위한 헬름홀쯔 공명기 배열형 패널)

  • Kim, Yang-Hann;Kim, SangRyul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.924-930
    • /
    • 2005
  • Sound absorptive materials have good performance in high frequency range, not at low frequencies. Therefore it has been great challenge to develop a sound absorbing structure that is good at low frequency. We propose to use a Helmholtz resonator array panel for this purpose. A Helmholtz resonator is one of noise control elements widely used in many practical applications. The resonator is a simple structure composed of a rigid-walled cavity with a neck, but it has very high performance at resonance frequency. This paper discusses the sound absorption of Helmholtz resonator array panels at normal and random incidence. First, various experimental results are introduced and studied. Secondly, we theoretically predict the absorptive characteristics of the resonator away panel. The theoretical approach is based on the Fourier analysis for a periodic absorber. We believe that this method can be used to design a panel for low frequency noise control.

Advanced Design Technique of Helmholtz Resonator Adopting the Genetic Algorithm (유전자 알고리즘을 이용한 진보된 헬름홀쯔 공명기의 설계기법)

  • 황상문;황성호;정의봉
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1113-1120
    • /
    • 1998
  • For an analysis of some Helmholtz resonators, it is likely to be more appropriate to consider acoustic field within cavity than just the 1-DOF analogous model. However, a design method that considers increased parameters than the lumped model. is not a trivial process due to the trade-off effect among the parameters. In this paper. the genetic algorithm. one of the optimization technique that rapidly converges to global fittest solution and robust convergence. is applied to the design process of Helmholtz resonators. Results show that the genetic algorithm can be successfully and efficiently used to find the resonant frequencies for both lumped model and distributed model.

  • PDF

External Leakage on Helmholtz Resonators (헬름홀쯔 공명기에서 외부로의 누출)

  • Lee, Iljae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.752-758
    • /
    • 2013
  • The effect of external leakage on the acoustic performance of Helmholtz resonators is experimentally and numerically investigated. The transmission loss of the Helmholtz resonator with a circular perforated hole is measured by using an impedance tube setup. The experimental results are then compared with one-dimensional analytical and three-dimensional numerical results. As the size of the hole increases, the peak of the transmission loss shifts to higher frequency, especially for the holes on the cavity. While the transmission loss is almost independent of the location of the hole on the cavity, the impact of the hole location on the neck on the transmission loss is not negligible. The results show that one-dimensional analytical method can predict the overall trends, whereas three-dimensional numerical method is necessary for more accurate predictions.