• Title/Summary/Keyword: 헬륨

Search Result 377, Processing Time 0.023 seconds

Helium Quantity Estimation for LOx Tank Pressurization of a Restartable Pressure-fed Propulsion System (재 점화가 있는 가압식 추진기관의 액체산소 탱크 가압 헬륨량 산정)

  • Cho, Gyu-Sik;Jung, Young-Suk;Oh, Seung-Hyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.3
    • /
    • pp.77-81
    • /
    • 2012
  • In a cryogenic propellant tank the pressurant is contracted due to heat loss and the propellant itself evaporates. On a restartable propulsion system such phenomena are more intensive because the propellant contacts with the pressurant on the larger surface during the coast flight. Such heat and mass transfer phenomena should be considered for estimating the amount of pressurant. On the hypothesis that the heat and mass transfer quasi-equilibrium is achieved during the coast flight, the calculation process of the equilibrium pressure is presented. On the process the amount of loaded helium on the Falcon-1 second stage is calculated.

Study on Temperature Characteristic of Pressurization System Using Helium Gas (헬륨 가압시스템에 대한 온도특성 연구(II))

  • Chung Yonggahp;Cho Namkyung;Kil Kyoungsub;Kim Youngmog
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.168-175
    • /
    • 2005
  • The pressurization system in a liquid rocket propulsion system provides a controlled gas pressure in the ullage space of the vehicle propellant tanks. It is advantage to employ a hot gas heat exchanger in the pressurization system to increase the specific volume of the pressurant and thereby reduce over-all system weight. A significant improvement in pressurization-system performance can be achieved, particularly in a cryogenic system, where the gas supply is stored inside the cryogenic propellant tank. The temperature characteristic of cryogenic pressurant is very important to develop some components in pressurization system. Numerical modeling and Test data were studied using SINDA/FLUINT Program and PTF(Propellant-feeding Test Facility).

  • PDF

Analysis of Trace Impurities in The Bulk $H_2$ and He Gases by a Cold Concentration Method (저온 농축법에 의한 수소와 헬륨 중의 미량가스 분석)

  • Lee, Taeck Hong;Park, Doo Seon;Son, Moo Ryong
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.5
    • /
    • pp.526-530
    • /
    • 1998
  • Analysis of trace impurities in the gases has been very important with the development of semi-conductor related industry. Particularly, the contamination of the gas handling systems in a semi-conductor plant by the air has been a trouble to the manufacturers. Thus, the analysis of the air components in the system has been a task to the analysts. In this study, we report the analysis data with a expanded uncertainty for the trace impurities of nitrogen and argon in the bulk helium and hydrogen. All data show a good correspondence, exhibiting reliable statistical error ranges.

  • PDF

COMPUTATIONAL ANALYSIS ON THE COOLING PERFORMANCE OF GLASS FIBER COOLING UNIT WITH HELIUM GAS INJECTION (헬륨가스 주입식 유리섬유 냉각장치의 냉각성능 해석)

  • Oh, I.S.;Kim, D.;Umarov, A.;Kwak, H.S.;Kim, K.
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.110-115
    • /
    • 2011
  • A modern optical fiber manufacturing process requires the sufficient cooling of glass fibers freshly drawn from the heated and softened silica preform in the furnace, since the inadequately cooled glass fibers are known to cause improper polymer resin coating on the fiber surface and to adversely affect the product quality of optical fibers. In order to greatly enhance the fiber cooling effectiveness at increasingly high fiber drawing speed, it is necessary to use a dedicated glass fiber cooling unit with helium gas injection between glass fiber drawing and coating processes. The present numerical study features a series of three-dimensional flow and heat transfer computations on the cooling gas and the fast moving glass fiber to analyze the cooling performance of glass fiber cooling unit, in which the helium is supplied through the discretely located rectangular injection holes. The air entrainment into the cooling unit at the fiber inlet is also included in the computational model and it is found to be critical in determining the helium purity in the cooling gas and the cooling effectiveness on glass fiber. The effects of fiber drawing speed and helium injection rate on the helium purity decrease by air entrainment and the glass fiber cooling are also investigated and discussed.

액체추진기관 Rocket의 발사를 위한 지상공급시스템 개발

  • 이정호;길경섭;김용욱;조상연;오승협
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.90-90
    • /
    • 2003
  • 한국항공우주연구원은 액체추진기관 시스템을 이용한 3단형과학로켓(이하 KSR-III)을 국내 최초로 개발하여 비행시험을 수행하였다. 액체추진기관 로켓의 비행시험을 위해서는 이전의 고체 추진기관을 이용한 과학로켓 1, 2와는 달리 비행시험 조건에 부합하게 액체추진제 및 가압제 등을 공급하는 지상설비가 필요하다. 이에 한국항공우주연구원은 독자적으로 비행시험에 필요한 제반 설비를 갖춘 발사장을 구축하였다. KSR-III는 압축 헬륨가스(GHe)를 이용하여 연료(Jet A-1)와 산화제(LOx)를 가압하여 추력을 얻는 액체추진기관 시스템이다. 따라서 발사장에서의 지상공급설비는 유공압 설비와 발사시나리오에 따라 해당 부품을 제어하고 자료를 저장하는 제어/계측 설비 및 기타설비들로 구성되어 있다. 지상공급설비 중 유공압 설비는 LOx의 저장 및 기체 내 산화제 탱크의 충전을 위한 산화제 공급설비, Jet A-1의 저장 및 기체 내 연료 탱크의 충전을 위한 연료 공급 설비, 지상설비용 밸브구동 및 기체 내부 퍼지 등에 필요한 질소($N_2$)를 저장/공급하는 설비, 기체내부 밸브 구동 및 가압제로 사용되는 기체헬륨(He)을 저장/공급하는 설비들로 구성되어 있다. 이러한 구축된 공급설비는 기능시험, 연계시험 등의 각종 입증시험을 통해 그 성능을 검증한 후 단인증모델(SQTM)을 이용하여 발사 시나리오에 따른 추진제 공급능력을 입증한 후 KSR-III의 비행시험을 성공적으로 수행하였다. 수행된 연구결과는 향후 건설되어질 우주센터내의 발사장 기반설비 설계의 기초 자료로 활용할 수 있을 것이다.

  • PDF

Helium Quantity Estimation for LOx Tank Pressurization of a Restartable Pressure-fed Propulsion System (재 점화가 있는 가압식 추진기관의 액체산소 탱크 가압 헬륨량 산정)

  • Cho, Gyu-Sik;Jung, Young-Suk;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.201-205
    • /
    • 2011
  • In a cryogenic propellant tank the pressurant is contracted due to heat loss and the propellant itself evaporates. On a restartable propulsion system such phenomena are more intensive because the propellant contacts with the pressurant on the larger surface during the coast flight. Such heat and mass transfer phenomena should be considered for estimating the amount of pressurant. On the hypothesis that the heat and mass transfer quasi-equilibrium is achieved during the coast flight, the calculation process of the equilibrium pressure is presented. On the process the amount of loaded helium on the Falcon-1 second stage is calculated.

  • PDF

Investigation of the Cryogenic Oxidizer Tank Inner Phenomena of Pump-fed Liquid Rocket Engine Propulsion System (터보펌프식 액체추진기관에서의 극저온 산화제 탱크 내부 현상 고찰)

  • 조남경;권오성;정용갑;조인현;김영목;조기주;정영석
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.238-241
    • /
    • 2003
  • In case of liquid rocket using turbopump, the inner pressure of liquid oxygen tank is maintained low, so vaporization of LOX is generally occurred. This vaporization tendency increases as the inlet helium gas temperature is higher. For estimating the amount of helium in the rocket system, the LOX vaporization phenomena should be carefully considered. In this paper, Inner process of LOX tank is analyzed by two phase flow modeling. the vaporization rate and required Helium mass is investigated with varying inlet helium temperature and heat transfer coefficient.

  • PDF

Heating Apparatus Development for Cryogenic Gaseous Helium (극저온 헬륨가스 가열장치 개발)

  • Chung, Yong-Gahp;Kwon, Oh-Sung;Cho, Nam-Kyung;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.363-367
    • /
    • 2009
  • For the liquid rocket propulsion system using liquid oxygen as oxidizer, helium for pressurizing LOX is usually stored in the LOX tank with cryogenic temperature. For that kind of pressurizing system, cryogenic helium is discharged from the immerged pressurant cylinder and passes through the heat exchanger downstream of gas generator. During the process, helium pressurant is heated from cryogenic temperature to high one and supplied to the ullage of propellant tank. To develop the pressurizing system, a cryogenic heating apparatus is needed to simulate the heat exchanger. In this paper, the cryogenic heating apparatus for development of the pressurization system is presented along with its heating test results with cryogenic helium.

  • PDF

HELIUM CONCENTRATION DECREASE DUE TO AIR ENTRAINMENT INTO GLASS FIBER COOLING UNIT IN A HIGH SPEED OPTICAL FIBER DRAWING PROCESS (광섬유 고속인출공정용 유리섬유 냉각장치 내 공기유입에 의한 내부헬륨농도 저하현상 연구)

  • Kim, K.;Kim, D.;Kwak, H.S.;Park, S.H.;Song, S.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.92-98
    • /
    • 2010
  • In a modern high speed drawing process of optical fibers, it is necessary to use helium as a cooling gas in a glass fiber cooling unit in order to sufficiently cool down the fast moving glass fiber freshly drawn from the heated silica preform in the furnace. Since the air is entrained unavoidably when the glass fiber passes through the cooling unit, the helium is needed to be injected constantly into the cooling unit. The present numerical study investigates and analyzes the air entrainment using an axisymmetric geometry of glass fiber cooling unit. The effects of helium injection rate and direction on the air entrainment rate are discussed in terms of helium purity of cooling gas inside the cooling unit. For a given rate of helium injection, it is found that there exists a certain drawing speed that results in sudden increase in the air entrainment rate, which leads to the decreasing helium purity and therefore the cooling performance of the glass fiber cooling unit. Also, the helium injection in aiding direction is found to be more advantageous than the injection in opposing direction.

Development of Comparative Calibration System for Helium Leak Standard by Using Mass Spectrometer Type Leak Detector (질량분석기형 누출검출기를 이용한 헬륨투과형 표준 누출 비교 교정 장치 개발)

  • Hong, Seung-Soo;Lim, In-Tae;Kim, Jin-Tae;Shin, Yong-Hyeon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.151-156
    • /
    • 2008
  • Many kinds of mass spectrometer type leak detectors have been widely used for detecting leak of vacuum processes in semiconductor and display industries etc. The leak detectors should be often calibrated by the permeation type standard leak in order to ensure accurate and reproducible leak measurement. We have developed a comparative calibration system for permeation type standard leak by using mass spectrometer type leak detector and specification of the calibration method. Following this technique the reliable calibration for leak standard ran be performed even in fields.