• Title/Summary/Keyword: 헬륨

Search Result 375, Processing Time 0.028 seconds

Commissioning Results of the Warm Compression System for the KSTAR Helium Refrigeration System (KSTAR 헬륨냉동기의 압축시스템 시운전 결과)

  • Park, Dong-Seong;Chang, Hyun-Sik;Joo, Jae-Joon;Moon, Kyung-Mo;Cho, Kwang-Woon;Kim, Yang-Soo;Bak, Ju-Shik;Kwon, Il-Keun;Cho, Myeon-Chul;Yang, Seung-Han
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.125-130
    • /
    • 2008
  • The main components of the KSTAR helium refrigeration system (HRS) can be classified into the warm compression system (WCS) and the cryogenic devices according to the operating temperature levels. The WCS itself consists of the compressor station (C/S) and the oil removal system (ORS). The process helium is compressed from 1 bar to 22 bar maximum in the C/S and downstream, the ORS removes the oil mixed in the helium to less than 10 ppbw as per the operation criteria of the cryogenic devices of the KSTAR HRS. After the installation, the pre-commissioning and commissioning activities were started on July, 2007. Before the start-up of the C/S, vibration measurement and the skid reinforcement jobs were performed for stable operation of the C/S. The results of the WCS performance tests met the requirements of the KSTAR HRS but satisfied the vibration level criteria only at the compressors' full load condition.

  • PDF

I2-Saturated Absorption Spectroscopy for Frequency-Stabilization of He-Ne Laser at 543 nm (543 nm 헬륨네온 레이저의 주파수 안정화를 위한 I2 포화흡수분광)

  • Kim, Kyung-Chan;Eum, Nyeon-Sik;Hong, Joo-Hyun;Seo, Ho-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.859-865
    • /
    • 2010
  • We have designed and assembled a saturated absorption-spectroscopy system of $^{127}I_2$ for the frequency stabilization of the 543 nm He-Ne laser. The frequency of a internal-mirror 543 nm He-Ne laser was swept by utilizing the temperature and PZT change of the laser cavity length. Frequency modulation was applied to the output laser mirror with a PZT modulator for the third harmonic signal. A portion of the hyperfine spectrum originated from the R(12)26-0 and R(106)28-0 transitions of the B-X system of $^{127}I_2$ was observed as the third-derivative signal using a saturated absorption spectroscopy. The signal-to-noise ratio of a typical hyperfine spectrum signal was estimated to be 30:1.

Frequency modulation spectroscopy of a super-cavity using a single mode He-Ne laser (단일모드 헬륨네온레이저를 사용한 초공진기의 주파수 변조 분광연구)

  • 서호성;윤태현;조재흥;정명세;류갑열;김영덕;최옥식
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.27-36
    • /
    • 1992
  • Frequency modulation spectroscopy of the super-cavity, of which finesse is app. 40,000 has been demonstrated by using a sigle mode He-Ne laser. In-phase and quardrature components of frequency modulation signals (FM signal) were obtained by using the 1.5 MHz-driven-electrooptic phase modulator. The vector locus of the FM signa in the phase space, which is consisted of in-phase and quardrature components of the FM signal, was observed and analyzed for the dependence of FM signal upon the phase of the reference signal of a phase-sensitive-detector. According to rotating the phase of the reference signal, the vector locus was observed to rotate with the same phase angle as the reference signal. The in-phase component of the FM signals will be used to stabilize the frequency of the He-Ne laser to the resonant frequency of the super-cavity.

  • PDF

Shell and Tube Heat Exchanger Performance Estimation by Changing Shell-side Fluid Characteristics (쉘-튜브 열교환기에서의 쉘쪽 유체의 특성에 따른 열교환기 성능 변화 예측 사례)

  • Baek, Seungwhan;Jung, Youngsuk;Cho, Kiejoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.27-37
    • /
    • 2019
  • The shell and tube heat exchangers installed in the propulsion system test complex (PSTC) at the Naro Space Center heats cryogenic helium to 500 K with a heat transfer oil. As the experimental helium outlet temperature was lower than expected (less than 100 K), the boundary layer effect of the heat transfer oil is predicted to be the cause of the performance deterioration. A computational fluid dynamics (CFD) analysis was performed to verify where the boundary layer effect exists; however, the boundary layer effect has no significant impact on the performance of the heat exchanger. An alternative method to improve the performance of the heat exchanger by changing the heat transfer oil has been discussed in this paper. The low viscosity and high thermal conductivity at high temperature (~500 K) of heat transfer oil at the shell-side are required to improve the thermal performance of the heat exchanger. The experimental performance of the heat exchanger, used to exchange heat between the cryogenic helium and hot heat transfer oil at the PSTC are summarized in this paper.

Variations of Temperature, Chemical Component and Helium Gas of Geothermal Water by Earthquake Events in Pohang Area (포항 지열수의 지진에 의한 수온, 화학성분 및 헬륨가스의 변화)

  • Lee, Yong Cheon;Jeong, Chan Ho;Lee, Yu Jin;Kim, Young-Seog;Kang, Tae-Seob
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.647-658
    • /
    • 2021
  • In this study, the change of temperature, chemical composition, and helium gas of thermal water in Pohang area was observed from January 2018 to June 2019 in order to interpret the relationship with earthquake events. During observation period earthquakes above M 2.0 within 100 km in a radius from a geothermal well occurred 58 including two earthquake events with a magnitude of 3.0~3.9 and two earthquake events with a magnitude of 4.0~4.9. We introduce a q-factor and earthquake effectiveness (ε) to express the influence of each earthquake as magnitude and distance factors. The geothermal well of 715 m deep was developed in the Bulguksa biotite granite, and the water temperature was observed in the variation from 51.8 to 56.3℃ during monitoring period. At M 4.1 and M 4.6 earthquake events, the increase of geothermal water temperature (𝜟T 2.6~4.5℃) was recorded, and slight change in specific ionic components such as SO4 and Cl, and of chemical types on the Piper diagram were observed. In the 3He/4He vs 4He/20Ne diagram, the original mixing ratio of helium isotope before and after the magnitude 4.1 earthquake was slightly changed from 83.0% to 83.2% of crust-origin 4He, and the from 16.3% to 16.7% of mantle-origin 3He. Hot-cold water mixing ratio before and after earthquakes by using the quartz and chalcedony solubility curves of the silica-enthalpy mixing model was calculated to interpret the temperature change of geothermal water. The model calculation shows the increase of 6.93~7.72% and 1.65~4.94% of hot water ratio at E1 and E2 earthquakes, respectively. Conclusively, the magnitude of earthquake for observable change in the temperature and helium isotope of thermal water is of 4.1 or higher and q-factor value of 30.0 or higher in the study site.

High-Temperature Structural-Analysis Model of Process Heat Exchanger for Helium Gas Loop (I) (헬륨가스루프 시험용 공정열교환기에 대한 고온구조해석 모델링 (I))

  • Song, Kee-Nam;Lee, Heong-Yeon;Kim, Yong-Wan;Hong, Seong-Duk;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1241-1248
    • /
    • 2010
  • In large-scale production of hydrogen, a PHE (Process Heat Exchanger) is a key component because the heat required to carry out the Sulfur-Iodine chemical reaction that yields hydrogen is transferred from a VHTR (Very High Temperature Reactor) by the PHE. Korea Atomic Energy Research Institute established a helium gas loop for conducting performance test of components that are used in the VHTR. In this study, as a part of high-temperature structural-integrity evaluation of a designed PHE prototype that is scheduled to be tested in the helium gas loop, we carried out high-temperature structural-analysis modeling, thermal analysis, and thermal-expansion analysis for the designed PHE prototype. An appropriate constraint condition is proposed at the end of the in-flow and out-flow pipelines of the primary and secondary coolants and the proposed constraint condition will be applied to the design of the performance-test loop setup for the designed PHE prototype.

Construction and Assembly of KSTAR Current Leads and the Helium Control System (KSTAR 전류인입선 및 헬륨냉매 제어시스템 제작 및 설치)

  • Song, N.H.;Woo, I.S.;Lee, Y.J.;Kwag, S.W.;Bang, E.N.;Lee, K.S.;Kim, J.S.;Jang, Y.B.;Park, H.T.;Hong, J.S.;Park, Y.M.;Kim, Y.S.;Choi, C.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.388-396
    • /
    • 2007
  • KSTAR (Korea Superconducting Tokamak Advanced Research) current lead system (CLS) has a role to interconnect magnet power supply (MPS) in room temperature (300 K) and superconducting (SC) bus-line, electrically. For the first plasma experiments, it should be assembled 4 current leads (CL) on toroidal field (TF) current lead box (CLB) and 14 leads on poloidal field (PF) CLB. Two current leads, with the design currents 17.5 kA, and SC bus-lines are connected in parallel to supply 35 kA DC currents on TF magnet. Whereas, it could supply $20\;{\sim}\;26\;kA$ to each pairs of PF magnets during more than 350 s. At the cold terminals of the leads, there are joined SC bus-lines and it was constructed helium coolant control system, aside from main tokamak system, to protect heat flux through current leads and enhanced Joule heat due to supplied currents. Throughout the establishment processes, it was tested the high vacuum pumping, helium leak of the helium lines and hardwares mounted between the helium lines, flow controls for CL, and liquid nitrogen cool-down of possible parts (current leads, CL helium lines, and thermal shield helium lines for CLB), for the accomplishment of the required performances.

Development and spectroscopic characteristics of the high-power wave guide He Plasma (도파관식 고출력 헬륨 플라즈마의 개발과 분광학적 특성 연구)

  • Lee, Jong-Man;Cho, Sung-Il;Woo, Jin-Chun;Pak, Yong-Nam
    • Analytical Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.265-272
    • /
    • 2012
  • Okamoto cavity was modified to generate high power (2.45 GHz, 2 kW) He, N2 and Ar plasmas with WR-340 waveguide. Many factors which influence to the plasma generation were optimized and investigated for the spectroscopic properties of the He plasma generated. Some of the important factors are the diameter of the inner conductor, the distance between the inner and outer conductors and the distance between the tip of the inner conductor and the torch. After optimization for the He, two torches (a commercial mini torch for ICP and a tangential flow torch made locally) were compared and showed similar results for the helium plasma gas flow of 25 L/min~30 L/min. A tall torch (extended) was used to block the air in-flow and reduced the background intensity at 340 nm region (NH band). Emission intensity was measured for determination of halogen element in the aqueous solution with power and carrier gas flow rate. Electron number density and the excitation temperature were on the order of $3.67{\times}10^{11}/cm^3$ and 4,350 K, respectively. These values are similar or a bit smaller than other microwave plasmas. It has been possible to analyze aqueous samples. The detection limit for Cl (479.45 nm) was obtained to be 116 mg/L and needs analytical optimization for the better performance.

Application of cold plasma treatment as a method to improve the physical properties of defatted mustard meal-based edible films (탈지 겨자씨 소재 가식성 필름의 물리적 특성 향상을 위한 콜드 플라즈마의 적용)

  • Jeong, Ha Eun;Oh, Yoon Ah;Min, Sea Cheol
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.5
    • /
    • pp.634-639
    • /
    • 2021
  • This study investigated the effects of cold plasma (CP) treatment on the properties of biopolymer films prepared with defatted mustard meal (DMM films). CP treatments using N2, O2, He, Ar, and dry air did not affect the tensile properties, water vapor permeability, color, and morphology of DMM films, whereas the treatments using He and Ar improved their printability. The tensile strength (TS) of O2- or air-CP-treated DMM films and the elastic modulus (EM) of O2-, He-, Ar-, or air-CP-treated films were lower than those of the untreated films. An increase in the power of Ar-CP treatment resulted in an increase in EM. The optimum treatment power and time for minimizing yellowness changes by Ar-CP treatment were 420 W and 40 min, respectively. The results demonstrated the potential application of CP treatment to improve the film properties of DMM films and possibly other agricultural by-product-based biopolymer films, making the films more applicable to food packaging.