• Title/Summary/Keyword: 헤테로다인 수신기

Search Result 15, Processing Time 0.029 seconds

KSTAR 전자 사이클로트로 방출(ECE) 진단계

  • Jeong, Seung-Ho;Lee, Gyu-Dong;Kogi, Y.;Kawahata, K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.411-411
    • /
    • 2011
  • KSTAR 토카막 플라즈마의 전자온도 측정을 위한 전자 사이클로트론 방출(ECE) 진단계가 완성되어 KSTAR 3차 운전기간 동안 전자온도를 측정하였다. ECE 진단계는 2단의 헤테로다인 수신기 2개와 75채널의 RF 검출기 그리고 비디오 증폭기로 이루어져있다. 2개의 헤테로다인 수신기의 주파수 범위는 각각 110 GHz~162 GHz, 164 GHz~196 GHz 이며 163 GHz multiplexer에 의해 ECE power를 나눠갖는다. 각 채널 사이의 주파수 간격은 1 GHz이며 토로이달 자장을 2.5T로 운전한다면 플라즈마 반경방향의 모든 위치에서 측정이 가능하다. 또한 시간분해능도 100 kHz로 우수하여 반경방향의 전자온도분포의 시간 변화를 측정할 수 있다. 이 포스터에서는 2010년 KSTAR 실험동안 반경위치에 대한 전자온도를 측정과 sawtooth, ELM 등 MHD 현상 관측 결과에 대해 발표하였다. 그리고 중성빔(NB) 가열을 하는 동안 나타난 H-mode 때 전자온도의 변화도 살펴보았다.

  • PDF

Design and Implementation of Receiver for X-Band Transponder (X-Band 트랜스폰더 수신기의 설계 및 제작)

  • 이원우;조경준;김상희;김종헌;이종철;이병제;김남영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.6
    • /
    • pp.507-513
    • /
    • 2002
  • In this paper, the receiver using Heterodyne type is designed and implemented for a pulse radar at 9.4 GHz. The If amplifier, which occupies a significant size in a Heterodyne receiver for pulse radars, can be removed. Furthermore, by using detector logarithmic video amplifier in baseband, the receiver has a small size and it's characteristic shows a high dynamic range and sensitivity. From the results of measurements, the minimum receiver power of -70 dBm and selectivity of 55 dB are obtained.

Performance of Heterodyne/Coherent Optical BFSK Receiver (헤테로다인/코히어런트 광 BFSK 수신기의 성능평가)

  • Lee, Kyu-Song;Park, Sang-Young;Lim, Ho-Geun;Kim, Chang-Min;Hong, Woan-Hue
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.10
    • /
    • pp.154-160
    • /
    • 1990
  • System modeling for Heterodyne/Coherent Optical BFSK receiver is described and its receiver performance is evaluated. Receiver performance is deteriorated due to both shot noise and laser phase nois. Therefore, to minimize these noise impacts PLL loop natural frequency is selected optimally. For different power penalty due to phase error, required phase error variance to achieve $BER=10^{-9}$, nomalized loop power, and laser linewidth/bit rate(${\Delta\nu}s/Rb$) are derived. For 0.5dB power penalty, phase error variance=0.035(${rad^2}$), photon numbers=20.0, nomalized loop power = $3.8{\times}10^{-3}$(electron/s per herz), and ${\Delta\nu}s/Rb=5.24{\times}10^{-3}$ are obtained.

  • PDF

Wireless Communication using Millimeter-Wave Envelope Detector (밀리미터파 포락선 검파기를 이용한 무선통신)

  • Lee, Won-Hui;Jang, Sung-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.79-82
    • /
    • 2017
  • In this paper, we proposed the wireless communication system using millimeter-wave envelope detector. The sub-harmonic mixer based on schottky barrier diode was used in the transmitter. The receiver was used millimeter-wave envelope detector. The transmitter was composed of schottky diode sub-harmonic mixer, frequency tripler, and horn antenna. The receiver was composed of horn antenna, millimeter-wave envelope detector, low pass filter, base band amplifier, and limiting amplifier. At 1.485 Gbps and 300 GHz, the eye-diagram showed a very good performance as measured by the error free. Communication distance is reduced compared to the heterodyne receiver, but compact and lightweight is possible.

An artificial noise generation method for MODEM performance test in satellite communication system (위성통신 시스템에서 수신기 모뎀 성능을 시험하기 위한 인위 잡음 발생 방법)

  • Cho, Tae-Chong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.59-64
    • /
    • 2020
  • Occasionally, MODEM test in satellite communication systems are needed. But Rx terminals in satellite communications are designed to obtain high SNR generally, therefore artificial bad conditions and environments are demanded for the test. One of the typical method is satellite output power reduction. Using noise generator can be another method. However, these costs a lot of money, time, and procedures in reality. In order to overcome these problems, this paper proposes an artificial noise generation method for MODEM test in satellite communication systems. First of all, SNR of a general heterodyne Rx terminal is calculated. Based on the calculation, a new model which is including variable attenuator is proposed to increase noise level. Simulation results illustrate the variable attenuator can control SNR, and these show that MODEM test in satellite communication systems be possible.

Two-Port Vector Network Analysis System with a Vector Signal Channel (벡터 전압 수신기를 이용한 2-포트 산란 계수 분석 시스템)

  • Lee, Dong-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.541-548
    • /
    • 2013
  • This paper presents a vector network analysis system for 2-port scattering parameters of microwave devices using some basic microwave instruments/devices such as signal generators, vector voltmeter, directional couplers and frequency mixers. The analytical model and implementation method for scattering parameter measurements - which can replace the vector network analyzers - are presented. The performance of the implemented system is evaluated through 1- and 2-port scattering parameter measurements, respectively. The vector volt signals which determine the scattering parameters are detected in two distinct methods depending on the frequency band of interests; a direct-detection method with a single signal generator and vector voltmeter for relatively low band and a heterodyne method to frequency down-mix associated with an additional signal source as well as frequency mixers for high band are used, respectively. Using these two methods, scattering parameters of UHF and X bands are evaluated and their performances are verified through a comercial vector network analyzer.

I/Q Imbalance Compensation Method for the Direct Conversion Receiver with Low Pass Filter Mismatch (저역 통과 필터 불일치를 포함한 직접 변환 수신기의 I/Q 불균형 보상 기법)

  • Yun, Seonhui;Ahn, Jaemin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.3-10
    • /
    • 2014
  • Direct conversion receiver(DCR) gets noticed for integration and cost reduction of wireless communication systems instead of the heterodyne receiver which uses complex filter. But DCR has several factors in performance degradation. One of them is I/Q imbalance phenomenon, that is amplitude and phase mismatch between real and imaginary part of receiver. Accordingly, researches are being carried to improve the I/Q imbalance problem. However, the tendency of the broaden bandwidth of communication systems, low pass filter(LPF) mismatch problem affects severely in I/Q mismatch phenomenon at the DCR. To study this problem, we generated 10MHz broadband signal and shifted it ${\pm}8MHz$ from the center frequency. The signal is affected by LPF mismatch and it appears as frequency selective distortion. Thus, LPF mismatch model is added to I/Q imbalance model which conventionally dealt with amplitude and phase mismatches. In addition, we proposed the compensation method for each factors of mismatch. As the simulation results, the proposed I/Q mismatch compensator resolves the frequency selective distortion which occurred by the existing LPF mismatch.

Implementation of An 1.5Gbit/s Wireless Data Transmission System at 300GHz Band (300GHz 대역 1.5Gbit/s 무선 데이터 전송 시스템 구현)

  • Lee, Won-Hui;Chung, Tae-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.1-6
    • /
    • 2011
  • In this paper, an 1.5Gbit/s wireless data transmission system using the carrier frequency of 300 GHz band was implemented. The RF front-end was composed of schottky diode sub-harmonic mixer, frequency tripler, and horn antennas for transmitter and receiver, respectively. The LO frequencies of sub-harmonic mixer are 150GHz for transmit chain and 156GHz for receive chain. The ASK(Amplitude Shift Keying) modulation was used in the transmitter and the envelope detection method was used in the heterodyne receiver. The conversion loss of sub-harmonic mixer and implementation system loss were measured to be 9.8dB and 1.2dB, respectively. The 1.5Gbit/s video signal with HD-SDI format was transmitted over wireless distance of 40cm without optical lens(4.2m with optical lens) and displayed on HDTV at the transmitted average output power of $20{\mu}W$.

H-Band(220~325 GHz) Transmitter and Receiver for an 1.485 Gbit/s Video Signal Transmission (H-대역(220~325 GHz) 주파수를 이용한 1.485 Gbps 비디오 신호 전송 송수신기)

  • Chung, Tae-Jin;Lee, Won-Hui
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.345-353
    • /
    • 2011
  • An 1.485 Gbit/s video signal transmission system using the carrier frequency of H-band(220~325 GHz) was implemented and demonstrated for the first in domestic. The RF front-end was composed of Schottky barrier diode sub-harmonic mixers(SHM) and frequency triplers, and diagonal horn antennas for transmitter and receiver, respectively. The transmitted carrier frequency of 246 GHz was implemented in the H-band, and LO frequencies of H-band SHM is 120 GHz and 126 GHz for transmit and receive chains, respectively. The modulation scheme is ASK(Amplitude Shift Keying) where IF frequency is 5.94 GHz and the envelop detection was used in heterodyne receiver architecture, and direct detection receiver using ZBD(Zero Bias Detector) was implemented as well. The 1.485 Gbit/s video signal with HD-SDI format was successfully transmitted over wireless link distance of 5 m and displayed on HDTV at the transmitted average output power of 20 ${\mu}W$.