• Title/Summary/Keyword: 허용형

Search Result 618, Processing Time 0.022 seconds

Case Study on the Overseas Locally-Led Community Design Guidelines (주민참여형 커뮤니티정원 조성 가이드라인 마련을 위한 국외 사례 비교 연구)

  • Lee, Airan;Park, Jae-Min
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.3
    • /
    • pp.117-129
    • /
    • 2018
  • With the changing of social needs and paradigms, citizens are concerned about aesthetic and cultural community gardens from productive urban farms in Korea. It is still difficult, however, to cultivate a beautiful garden with a community to design, install and manage it. Therefore, this study analyzed the community garden design guidelines of other countries to derive the characteristics and implications. The research method analyzed six guidelines for community garden design in the UK, Canada, the USA, Australia and Japan. As a result of the study, most community garden design guidelines are opened freely via on-line service. The guidelines are composed with chronological processes such as intro, site selection, design, construction and maintenance. The introduction section treats definition, purpose, meaning, efficiency and success factors for community gardens. Site selection emphasizes site conditions (soil, light, shadow, water, etc.), landholding and insurance. The design section, however, lacks adequate drawings and case images. These guidelines offer little explanation with few illustrations and sentences. Construction sections explain about plantings, facilities, expense and details. The maintenance guidelines of community gardens contain how to control members, funding, harvesting, pests and plants. In addition, some guidelines include vandalism, organic cultivation methods, recording and advertisement. Lastly, the appendix contains a variety of checklists, administrative documents, guidelines, drawings, and contacts. This study will help understand the trends and characteristics of overseas community gardens design guidelines so as to also supply directions for guidelines to be introduced in Korea.

Feasibility Study on Packaged FBG Sensors for Debonding Monitoring of Composite Wind Turbine Blade (풍력발전기 복합재 블레이드의 접착 분리 모니터링을 위한 패키징 광섬유 브래그 격자 센서 탐촉자의 사용성 검토)

  • Kwon, Il-Bum;Choi, Ki-Sun;Kim, Geun-Jin;Kim, Dong-Jin;Huh, Yong-Hak;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.382-390
    • /
    • 2011
  • Smart sensors embedable in composite wind turbine blades have been required to be researched for monitoring the health status of large wind turbine blades during real-time operation. In this research, the feasibility of packaged FBG sensor probes was studied through the experiments of composite blade trailing edge specimens in order to detect cracking and debonding damages. The instants of cracking and debonding generated in the shear web were confirmed by rapid changes of the wavelength shifts from the bare FBG sensor probes. Packaged FBG sensor probes were proposed to remove the fragile property of bare FBG sensor probes attached on composite wind blade specimens. Strain and temperature sensitivity of fabricated probes installed on the skin of blade specimen were almost equal to those of a bare FBG sensor. Strain sensitivity was measured to be ${\mu}{\varepsilon}$/pm in a strain range from to 0 to 600 ${\mu}{\varepsilon}$, and the calculated temperature sensitivity was to be 48 pm/$^{\circ}C$ in the heating test up to 80 degree.

New Development of Hybrid Concrete Support Structure with Driven Piles for Offshore Wind Turbines (하이브리드 해상풍력 파일 기초 콘크리트 지지구조(MCF) 개발)

  • Kim, Hyun Gi;Kim, Bum Jun;Kim, Ki Du
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.3
    • /
    • pp.307-320
    • /
    • 2013
  • This paper proposes a new hybrid support structure by the driven piles which removes disadvantages of the existing type of support structure for offshore wind turbines. The hybrid type of support structure is combined with concrete cone and steel shaft, and is supported not only by gravity type foundations but also by driven piles. For three dimensional analysis of the huge and thick concrete structure, a solid-shell element that is capable of exact modeling and node interpolations of stresses is developed. By applying wave theory of stream function and solid-shell element in XSEA simulation software for fixed offshore wind turbines, a quasi-static analysis and natural frequency analysis of proposed support structure are performed with the environmental condition on Southwest Coast in Korea. In the result, lateral displacement is not exceed allowable displacement and a superiority of dynamic behavior of new hybrid support structure is validated by natural frequency analysis. Consequently, the hybrid support structure presented in this study has a structural stability enough to be applied on real-site condition in Korea. The optimized structures based on the preliminary design concept resulted in an efficient structure, which reasonably reduces fabrication costs.

Safety evaluation of type B transport container for tritium storage vessel (B형 삼중수소 운반용기 안정성 평가)

  • Lee, Min-Soo;Paek, Seung-Woo;Kim, Kwang-Rag;Ahn, Do-Hee;Yim, Sung-Paal;Chung, Hong-Suk;Choi, Heui-Joo;Choi, Jeong-Won;Son, Soon-Hwan;Song, Kyu-Min
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.2
    • /
    • pp.155-169
    • /
    • 2007
  • A transport container for a 500 kCi tritium storage vessel was developed, which could be used for the transport of metal tritide from Wolsong TRF facility to a disposal site. The structural, thermal, shielding, and confinement analyses were performed for the container in a view of Type B. As a result of structural analysis, the developed container sustained its integrity under normal and accidental conditions. The maximum temperature increase of the inner storage vessel by radiation was evaluated at $134.8^{\circ}C at room temperature. In $800^{\circ}C$ fire test, The thermal barrier of container sustained the inner vessel at $405^{\circ}C after 30 min, which temperature was allowable for the container integrity since maximum design temperature of inner vessel was $550^{\circ}C. In the evaluation of the shielding, the activity of radiation was nearly zero on the outer surface of inner vessel. Consequently the transport container for a 500 kCi tritium was evaluated to pass all the safety tests including accidental condition, so it was concluded that the designed transport container is proper to be used.

  • PDF

A Study on Stability and Economic feasibility according to Height on the MSE Wall with Pacing Panel (고속도로 도로부에 시공된 패널식 보강토 옹벽의 높이별 안전율과 경제성 검토)

  • Park, Min-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.54-63
    • /
    • 2018
  • In this study, the stability and economic feasibility of a MSE (Mechanically stability earth) wall with a pre-cast concrete pacing panel was investigated for a standard section of highway. Based on the design criteria, the MSE walls of the panel type were designed considering the load conditions of the highway, such as the dead load of the concrete pavement, traffic load, and impact load of the barrier. The length of the ribbed metal strip was arranged at 0.9H according to the height of the MSE walls. Because the length of the reinforcement was set to 0.9H according to the height of the MSE wall, the external stability governed by the shape of the reinforced soil was not affected by the height increase. The factor of safety (FOS) for the bearing capacity was decreased drastically due to the increase in self-weight according to the height of the MSE wall. As a result of examining the internal stability according to the cohesive gravity method, the FOS of pullout was increased and the FOS of fracture was decreased. As the height of the MSEW wall increases, the horizontal earth pressure acting as an active force and the vertical earth pressure acting as a resistance force are increased together, so that the FOS of the pullout is increased. Because the long-term allowable tensile force of the ribbed metal strip is constant, the FOS of the fracture is decreased by only an increase in the horizontal earth pressure according to the height. The panel type MSE wall was more economical than the block type at all heights. Compared to the concrete retaining wall, it has excellent economic efficiency at a height of 5.0 m or more.

Methodology of Shape Design for Component Using Optimal Design System (최적설계 시스템을 이용한 부품에 대한 형상설계 방법론)

  • Lee, Joon-Seong;Cho, Seong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.672-679
    • /
    • 2018
  • This paper describes a methodology for shape design using an optimal design system, whereas generally a three dimensional analysis is required for such designs. An automatic finite element mesh generation technique, which is based on fuzzy knowledge processing and computational geometry techniques, is incorporated into the system, together with a commercial FE analysis code and a commercial solid modeler. Also, with the aid of multilayer neural networks, the present system allows us to automatically obtain a design window, in which a number of satisfactory design solutions exist in a multi-dimensional design parameter space. The developed optimal design system is successfully applied to evaluate the structures that are used. This study used a stress gauge to measure the maximum stress affecting the parts of the side housing bracket which are most vulnerable to cracking. Thereafter, we used a tool to interpret the maximum stress value, while maintaining the same stress as that exerted on the spot. Furthermore, a stress analysis was performed with the typical shape maintained intact, SM490 used for the material and the minimizing weight safety coefficient set to 3, while keeping the maximum stress the same as or smaller than the allowable stress. In this paper, a side housing bracket with a comparably simple structure for 36 tons was optimized, however if the method developed in this study were applied to side housing brackets of different classes (tons), their quality would be greatly improved.

The study on the effectiveness of smart home network service for IT underprivileged people and growth service model (IT소외 계층을 위한 실질적 스마트홈네트워크서비스의 영향 및 성장형 서비스모델에 대한 연구)

  • Kim, Byoung-Soo;Ji, Yeong-Soo;Han, Kyeong-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.1000-1007
    • /
    • 2011
  • Home Networking will be implementing the interactive network by home appliances over wireless/wireline network framwork. That is, Home appliances, which are being operated within home space configure the network through wireline/wireless network infrastructure for interworking and interacitive services by external internet access. Based on home networking, smarthome is home space where can use automatic telecommunication and interactive service by home appliances. we can call smarthome based on home networking infrastructure as the conceptual gateway for evolving future converged space like u-city. From simple home control service to home automation service over home networking infrastructure, smarthome service is evolving to up-to-date intelligent life environment in growth of IT technology. however, its service model development was based on supplier-centered based on advanced IT technology. because of this situation, smarthome service has not been acknowledged IT underprivileged people as well as IT early-adaptor. so, this research paper will consider and try to find out what will be the feasible factors to make the best service for IT underprivileged people.

Availability test of eco-levee construction for presevation of bangudae petroglyphs (생태제방을 이용한 반구대암각화 보존방안 연구)

  • Lee, Seung-Oh;Chegal, Sun-Dong;Cho, Hong-Je
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.11
    • /
    • pp.931-939
    • /
    • 2016
  • Bangudae Petroglopys of the national treasure No. 285 located in elevation of 53 m to 57 m have been damaged by repetition of submergence and exposure due to the Sayeon-dam of EL.60 m constructed in down stream. In this study, as a preservation plan of the petroglyphs from the contact with water, the construction of eco-levee was suggested and its effect was investigated in the views of hydraulic engineering. It was designed to be located aside of 80 m from Bangudae Petroglyphs with the length of 440 m in streamwise direction, and it was need to construct a new channel maintaining the original hydraulic capacity and conveyance. Hydraulic characteristics such as water surface elevations and velocities near Bangudae Petroglyphs were measured after the eco-levee was installed in the hydraulic model with the scale of 1:50. It showed that there were not much changes of water surface elevations and velocities between sayeon-dam spillway EL. 60 m (Suggestion 1) and EL. 54 m (Suggestion 2). It was concluded the eco-levee could be made of natural materials like soil, pebble, gravel in terms of allowable velocity and shear stresses. The slope of water surface at Suggestion 2 was steeper, and velocities near Bangudae Petroglyphs were also faster than Suggestion 1. As the vorties occured at the left side in Suggestion 2, more detailed study is required.

Photovoltaic Application in System Formwork Operations of High-rise Building Construction (초고층 시스템거푸집 공사의 태양광에너지 활용 방안 연구)

  • Kim, Tae-Hoon;Lee, Myung-Do;Lee, Ung-Kyun;Cho, Hun-Hee;Kang, Kyung-In
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.2
    • /
    • pp.116-126
    • /
    • 2011
  • Recently, eco-friendly energy has been employed in diverse fields of industry in order to reduce environmental pollution and secure a new growth engine. In particular, practical applications of photovoltaic energy, such as building integrated photovoltaic systems, have been implemented to the construction industry based on the extensive interest in photovoltaic power as an unlimited and sustainable energy. While the construction of a high-rise building requires large amounts of energy, methods of reducing energy consumption in the construction phase have rarely been studied. Based on this motivation, the research proposes a photovoltaic based formwork system (PVFS), and then performs a design and feasibility analysis for its application to the construction of a high-rise building. Using a case study, the research implements various analyses, including area, position, and total allowable weight required by PVFS, and evaluates the influences of PVFS on the construction processes, as well as its economic feasibility. The proposed PVFS can be adopted to a real-world project in the near future, depending on the advancement of technology and economic feasibility. The results of this research will contribute to establishing a construction environment that promotes a reduction of energy consumption by using eco-friendly energy in the construction phase.

A Method for Correcting Air-Pressure Data Collected by Mini-AWS (소형 자동기상관측장비(Mini-AWS) 기압자료 보정 기법)

  • Ha, Ji-Hun;Kim, Yong-Hyuk;Im, Hyo-Hyuc;Choi, Deokwhan;Lee, Yong Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.182-189
    • /
    • 2016
  • For high accuracy of forecast using numerical weather prediction models, we need to get weather observation data that are large and high dense. Korea Meteorological Administration (KMA) mantains Automatic Weather Stations (AWSs) to get weather observation data, but their installation and maintenance costs are high. Mini-AWS is a very compact automatic weather station that can measure and record temperature, humidity, and pressure. In contrast to AWS, costs of Mini-AWS's installation and maintenance are low. It also has a little space restraints for installing. So it is easier than AWS to install mini-AWS on places where we want to get weather observation data. But we cannot use the data observed from Mini-AWSs directly, because it can be affected by surrounding. In this paper, we suggest a correcting method for using pressure data observed from Mini-AWS as weather observation data. We carried out preconditioning process on pressure data from Mini-AWS. Then they were corrected by using machine learning methods with the aim of adjusting to pressure data of the AWS closest to them. Our experimental results showed that corrected pressure data are in regulation and our correcting method using SVR showed very good performance.