개인화 장비 기술의 발달과 함께 최근 모바일 디바이스는 카메라, MP3 플레이어 등 다양한 기능을 포함하고 있으며, 많은 사용자가 이를 사용하고 있다. 모바일 디바이스는 사용자가 항상 휴대하기 때문에 사용자 정보를 습득하기에 유용하며 따라서 이로부터 수집된 다양한 정보를 바탕으로 최근 여러가지 서비스를 제공하기 위한 노력이 이루어지고 있다. 본 논문에서는 사용자의 모바일 로그를 바탕으로 행동 패턴을 파악하여 사용자가 앞으로 취할 행동을 예측하고자 하며, 이 과정에서 다양한 행동 패턴 중 정확한 행동 예측을 수행하기 위해 다음과 같은 방법을 활용하였다. 장소, 시간, 요일 정보를 함께 사용하여 동적 베이지안 네트워크를 이용해 시간 변화에 따른 사용자 행동 패턴을 학습하였으며, 개인 사용자 모델과 전체 사용자 모델을 따로 학습함으로써 더 정확한 행동 패턴의 학습이 가능하도록 하였다. 실험을 위해 대학생들로부터 수집된 모바일 로그를 통해 제안하는 행동 예측 모델의 성능을 확인한 결과 77~94%의 예측 정확도를 보임을 확인하였다.
본 논문에서는 컨텐츠 사이트에서 디지털 컨텐츠를 보호하기 위하여 사용자 행동 패턴을 분석을 이용해 특이한 성향을 보이는 사용자를 탐지하기 위한 모델을 제시하였다. 사용자의 행동 패턴을 분석하기 위한 탐지 규칙(detection rule)으로 Syntactic Rule과 Semantic Rule을 정의하였다. 사용자 로그 분석 결과 탐지 규칙에 대한 위반 정도가 일정 범위를 벗어나는 사용자를 비정상적인 사용자로 추정하였다. 또한 제안 모델은 eCRM 시스템에서 이탈 가능성이 있는 고객 집단을 사전에 탐지하여 고객으로 유지하기 위한 promotion 전략 수립에 응용될 수 있다.
본 논문에서는 생물의 2차원영상에서 4가지의 특징을 추출한 다음 약품에 대한 생물의 행동 패턴 반응에 대하여 의사결정나무를 적용하여 패턴의 인식 및 분류를 하였다. 생물의 행동패턴을 대변하는 물리적인 특징인 속도, 방향전환 각도, 이동거리에 대하여 각각 중간이상속도비율, FFT(Fast Fourier Transformation), 2차원 히스토그램 면적, 프렉탈, 무게중심을 사용하여 특징을 추출하였다. 이렇게 추출된 4가지의 특징변수들을 사용하여 의사결정나무 모델을 구성한 다음 생물의 약품 첨가에 대한 반응을 분석하였다. 또한 결과에서는 기존의 생물의 행동패턴 구분에 쓰였던 전형적인 기법(conventional methods)보다 본 연구에서 적용한 의사결정나무가 생물의 행동패턴이 가지는 물리적 요소에 대한 독해력을 가짐을 보임으로써 특정환경에서 이동행동에 대한 분석을 용이하게 하고자 하였다.
본 논문에서는 인간의 행동과 유사하게 군중을 재편성하는 행동패턴 모델을 제안하고, 그 모델을 가상 환경의 캐릭터에 적용하여 구현하였다. 게임과 같은 가상환경에서 군중을 표현하는 군중 시뮬레이션의 사실감을 높이기 위하여 군중의 행동 패턴을 결정함에 있어 인간의 감정에 기반을 두었다. 이러한 모델을 바탕으로 인간의 감정을 캐릭터에 적용하고자 몇 가지 규칙을 정의하였고, 이를 바탕으로 군중에 속해있는 캐릭터들의 군중간의 이동을 사실적으로 구현하였다. 본 연구를 적용하여 보다 자연스러운 군중의 행동을 시뮬레이션 할 수 있을 것이다.
반려동물 웨어러블 시장의 성장함에 따라 반려동물의 행동 패턴을 측정하고 분석할 수 있는 센서데이터가 활용되고 있다. 본 논문에서는 반려동물 수면 패턴 모니터링을 위한 행동 분류 모델을 제안한다. 6축 센서 데이터를 활용한 가속도 및 자이로센서 데이터를 입력 데이터로 사용한다. 제안된 모델은 ResNet을 통해 시간에 따라 가속도 및 자이로센서 데이터의 특징을 추출한 후 LSTM을 사용하여 시계열 정보를 고려한 행동 분류를 수행한다. 이러한 과정을 통해 정확한 행동 패턴 분석이 가능하게 되며 반려동물의 건강 관리 및 수면 질 개선에 기여할 것으로 기대한다.
이상 행동을 탐지하는 딥러닝 기반 검지 시스템은 동영상 기반 데이터로부터 움직임을 보이는 객체를 추적하고 그 객체의 행동을 분석하여 정상적인 행동 범위를 벗어나는 패턴을 보이는 영역을 이상으로 탐지한다. 특히 생성적 적대 신경망(GAN)과 광학 흐름 추정(Optical flow estimation) 기법을 활용하여 움직임에 대한 특징 정보를 추출하고 이를 학습하여 행동 패턴에 대한 모델링을 수행한다. 모델 학습 및 테스트에 활용되는 데이터셋의 해상도가 낮거나 이상 행동을 표현하는 특징 정보가 부족할 경우 최종 모델 성능에 부정적 영향을 미치게 되며, 특히 광학 흐름이 표현하는 이동량 측면에서 차이가 크게 나지 않는 이상 객체의 경우 탐지가 정확하게 이뤄지지 않는다. 본 연구에서는 동영상 프레임에서 나타나는 객체의 평균 종횡비를 구하고 정상적인 비율을 벗어나는 객체에 대해서 이상 행동을 취하는 샘플로 처리하는 후처리단 모듈을 제안하여 최종적인 모델 성능을 향상시키는 방법을 고안한다.
본 논문에서는 범죄 발생 전 빠른 상황판단과 효과적인 의사결정을 위한 방법으로 이상 행동을 분류, 분석하여 이상행동 패턴을 발견하고 이에 따라 발생 전 상황을 예상할 수 있는 예측하는 모델을 제시하였다. 이러한 행동분석과 패턴예측 모델은 CCTV로 부터 수집된 데이터를 단계별 DB를 통해 빠르고 정확한 분석할 수 있고, 과거에 축적 및 분석된 데이터를 유사한 상황에 직면했을 때 사전에 예방하기 위한 유용한 도구로 활용이 가능할 것이다.
본 논문에서는 생물의 2차원영상에서 5가지 특징을 추출한 다음 약품에 대한 생물의 행동 패턴 반응에 대하여 의사결정나무를 적용하여 패턴의 인식 및 분류를 하였다. 생물의 행동패턴을 대변하는 물리적인 특징인, 속도, 방향전환 각도, 이동거리에 대하여 각각 중간이상속도비율 FFT(Fast Fourier Transform), 2차원 정사영 면적, 프렉탈 차원, 무게중심을 사용하여 특징을 추출하였다. 이렇게 추출된 5가지의 특징변수들을 사용하여 의사결정나무 모델을 구성한 다음 생물의 약품 첨가에 대한 반응을 분석하였다 또한 결과에서는 기존의 생물의 행동패턴 구분에 쓰였던 전형적인 기법(conventional methods) 보다 본 연구에서 적용한 의사결정나무가 생물의 행동패턴이 가지는 물리적 요소에 대한 독해력을 가짐을 보임으로써 특정 환경에서 이동행동에 대한 분석을 용이하게 하고자 하였다.
본 논문에서는 유비쿼터스 환경에서 인간의 행동패턴을 인식하고 이 결과를 활용하여 사용자의 의도를 추론하는 방법론에 관해 기술한다. 인간행동의 예측에 관한 지식표현으로부터의 추론기능과 예제패턴 기반의 학습기능을 동시에 지원하는 모델을 제시하고 이론의 타당성과 유용성을 고찰한다. 의도 추론 문제에서 지식기반 기법이 갖는 불완전성을 극복하기 위하여 예제기반 학습능력의 필요성을 도출하는 한편, 다양한 변이가 존재하는 응용에서 학습데이터 선정의 어려움을 보완하기 위한 방법론을 제시한다. 세부적으로 인간행동에 관한 특징표현과 행동패턴 클래스를 정의하고 이들간의 관계를 고유한 지식표현 규칙으로 정형화 한다. 또한 제안된 지식표현을 수용하는 추론 메커니즘을 제시하며, 제시한 모델의 부수적 특징으로 학습과정을 통한 지식 정련기능의 유용성을 고찰한다.
게임 NPC(Non Player Character)는 게임 플레이어와 대전 또는 협력함으로써 게임의 재미를 증가시키는 중요한 요소이다. 대부분 기존 게임에서 제공되는 NPC 인공지능은 FSM(Finite State Machine)으로 제작되어 행동 패턴이 정해져 있고 능력이 동일한 특징을 갖고 있다. 따라서 이러한 특징을 갖는 NPC들과 대전하는 플레이어는 창조적인 게임 플레이를 진행하는 것이 어려울 수 있다. 본 논문은 이 문제점을 개선하기 위하여 실제 생활에서 늑대들이 먹이를 사냥하는 행동 모델을 게임 NPC의 행동 모델로 제작하고 이를 평가하기 위한 것이다. 이를 위하여 첫째, 실세계에서 늑대들이 먹이를 포획하기 위한 행동 상태들을 조사 연구한다. 둘째, 이 행동 상태들을 Unity3D 엔진을 이용하여 구현한다. 셋째, 구현된 NPC들의 상태 전이 비율과 실세계의 NPC들의 상태 전이 비율, 일반적인 게임 NPC의 상태 전이 비율을 비교한다. 비교 결과, 구현된 NPC들의 상태 전이 비율은 실세계의 상태 전이 비율과 비슷함을 보인다. 이는 구현된 NPC들의 행동 패턴이 실세계의 늑대 사냥 행동 패턴과 유사함을 의미하는데, 이렇게 함으로써 플레이어에게 보다 증가된 사용자 경험을 제공할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.