• 제목/요약/키워드: 행동필터

검색결과 71건 처리시간 0.022초

<미적 감각자극 생성 시스템> 새로운 출발 ( Metamorphosis)

  • 최문찬;이준행;김형기;백준기
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 2부
    • /
    • pp.468-473
    • /
    • 2006
  • 본 논문은 인간의 마음을 움직이는 감각자극과 그것을 생성해 내는 시스템 구현에 관한 연구이다. 마음을 움직이거나, 어떤 행동을 유발하는 정신작용의 과정에 관여하는 요소들을 밝히고, 그 구조와 효과 등을 알아내는 일이 중요하며, 이러한 연구의 성과물들은 정신작용에 관여하는 요소들을 조작, 변수처리 하여 의도적인 정신작용 감각자극을 만들어 낼 수 있는 시스템 구현을 가능하게 할 수 있다. 인간은 감각자극으로 인지된 정보를 자신의 정신적인 필터를 통해 개념화하게 되는데, 이 시스템은 의식에 직접 관여하거나, 우회하는 감각자극에 대한 것들을 제공 할 수 있도록 인간의 개념화의 과정을 의식하여 시스템의 구조를 구현 했다. 인간의 기억데이터와 비슷하다 할 수 있는 구조적 위치의 소스데이터가 있다. 그리고 이것을 현실의 시공간에서 얻어지는 미적 행위와 자극의 반복을 통해 얻어진 결과로 만들어 내거나, 이러한 미적 결과물을 유저는 커뮤니케이션의 도구로 사용할 수 있다. 이와 같은 것의 시작으로, 우리의 삶 깊숙이 침투해 있는 미디어의 감각자극들을 수동적으로 수용하는 것이 아니라 능동적으로 생산해 내는 것이다. 이런 행위는 자신을 가꾸고 만드는 자기최면적인 도구나, 대상을 갖는 커뮤니케이션의 도구를 만들어내는 연구가 될 수 있다. 자신이 필요로 하는 정신적 바탕을 스스로 만들어가는 도구로써, 자신의 메시지를 대상에게 감동을 통해 전달하는 도구로써, 그 역할을 운운하기에는 시기상조인 감이 있다. 하지만 이 시스템은 이러한 비전을 가지고 개발과 발전을 거듭해 인공감성지능 감각자극 생성과 커뮤니케이션 시스템으로 성장 할 것이다.

  • PDF

포트 스캐닝 기법 기반의 공격을 탐지하기 위한 실시간 스캔 탐지 시스템 구현 (A Real Time Scan Detection System against Attacks based on Port Scanning Techniques)

  • 송중석;권용진
    • 한국정보과학회논문지:정보통신
    • /
    • 제31권2호
    • /
    • pp.171-178
    • /
    • 2004
  • 포트 스캐닝 탐지 시스템은 “False Positive”(실제 공격이 아닌데 공격이라고 탐지, 오탐지)와 “False Negative”(실제 공격인데 공격이 아니라고 탐지, 미탐지)가 낮아야 하는 등의 시스템 성능에 관한 요구사항과, 해당 탐지 시스템을 활용한 보안관리가 용이해야 하는 등의 사용자 친화적인 요구사항을 만족할 필요가 있다. 그러나 공개되어 있는 실시간 스캔 탐지 시스템은 False Positive가 높고 다양한 스캔 기법에 대한 탐지가 잘 이루어지지 않고 있다. 또한 실시간 스캔 탐지 시스템의 대부분이 명령어 기반으로 이루어져 있기 때문에 이률 활용하여 시스템 보안 관리를 수행하는데 많은 어려움이 있다. 따라서 본 논문에서는 새로운 필터 룰 집합의 적용에 의해 포트 스캐닝 기법 기반의 다양한 공격을 탐지 할 수 있고, 공격자의 행동 패턴으로부터 유도된 ABP-Rule의 적용에 의해 False Positive를 최소화할 수 있는 실시간 스캔 탐지 시스템(TkRTSD)을 제안한다. 또한 Tcl/Tk를 이용하여 GUI환경을 구축함으로써 사용자가 쉽게 보안관리를 할 수 있는 사용자 친화적인 탐지 시스템을 제안한다.

추천 시스템 정확도 개선을 위한 협업태그와 사용자 행동패턴의 활용과 이해 (Understanding Collaborative Tags and User Behavioral Patterns for Improving Recommendation Accuracy)

  • 김일주
    • 데이타베이스연구회지:데이타베이스연구
    • /
    • 제34권3호
    • /
    • pp.99-123
    • /
    • 2018
  • 웹상에서의 기하급수적으로 증가하는 정보의 양으로 인해, 중요하고 가치 있는 데이터를 변별 해 내는 작업은 그 어느 때보다도 중요하다고 하겠다. 추천 시스템은 이러한 정보의 과 공급 문제를 해결하기 위한 가장 효과적인 방법 중 하나임에도 불구하고, 그 성능은 기존 방식들에서 크게 진전을 이루지 못하고 있는 것이 사실이다. 따라서 본 논문에서는 이 문제를 진전시키기 위해, 협업태그를 활용한 새로운 사용자 프로파일링 기법을 제안하고 사용자의 평가 및 태깅패턴을 분석, 그 활용 또한 모색한다. 본 논문에서 제안하는 기법의 검증을 위해, 해당 프로파일링 기법을 활용 한 혼합 영화 추천 시스템을 구현하고 실제 데이터를 사용하여 기존의 추천 방식 대비 그 경쟁력을 검증하였다. 그와 더불어, 민감도 분석을 통해 사용자의 태깅패턴과 평가패턴에 기반한 차별적인 추천 방식의 잠재적 가능성 또한 제안, 검증한다.

지능정보기술과 민주주의: 알고리즘 정보환경과 정치의 문제 (Intelligent Information Technology and Democracy : Algorithm-driven Information Environment and Politics)

  • 민희;김정연
    • 정보화정책
    • /
    • 제26권2호
    • /
    • pp.81-95
    • /
    • 2019
  • 최근 선거캠페인에서 수집되는 유권자 모델링 및 맞춤형 커뮤니케이션에 관한 데이터는 양적 확장성과 질적 유용성 측면에서 새롭다. 본 연구는 지능정보기술을 활용한 고도의 데이터 분석 능력이 정치에 어떻게 활용되고 있는지에 주목한다. 그 중에서도 선거캠페인에서의 유권자 행동 타게팅이 다양한 측면에서 민주주의 과정과 충돌할 수 있다는 점에 초점을 맞춘다. 이를 위해 마이크로 타게팅과 정치 봇을 살펴본다. 본 연구는 이러한 기술 기반의 캠페인 기법들이 민주주의의 핵심인 자유로운 의견 표출과 논쟁을 방해하는 요인으로 작동하는 양상을 보여준다. 동시에 이에 영향을 미치는 알고리즘의 속성을 파악한다. 본 연구는 지능정보기술 기반의 정치와 민주주의에서 다음과 같은 문제가 발생할 수 있음을 제시한다. 첫째, 정치참여의 불평등이 심화된다. 둘째, 유권자 간 공적 논쟁이 어려워진다. 셋째, 피상적인 정치가 만연한다. 넷째, 단일 이슈 정치와 배제의 정치 현상이 증가한다. 마지막으로 정치적 프라이버시가 침해될 수 있다. 요컨대, 지능정보시대 우리의 역할은 점점 고도화되고 있는 지능정보기술과 민주주의가 공존할 수 있는 방법을 모색하는 것이다.

BERT를 활용한 초등학교 고학년의 욕설문장 자동 분류방안 연구 (A Study on Automatic Classification of Profanity Sentences of Elementary School Students Using BERT)

  • 심재권
    • 창의정보문화연구
    • /
    • 제7권2호
    • /
    • pp.91-98
    • /
    • 2021
  • 코로나19로 인해 초등학생이 온라인 환경에 머무는 시간이 증가함에 따라 작성하는 게시글, 댓글, 채팅의 양이 증가하였고, 타인의 감정을 상하게 하거나 욕설을 하는 등의 문제가 발생하고 있다. 네티켓을 초등학교에서 교육하고 있지만, 교육시간이 부족할 뿐 아니라 행동의 변화까지 기대하기는 어려움이 있어 자연어처리를 통한 기술적인 지원이 필요한 상황이다. 본 연구는 초등학생이 작성하는 문장에 사전언어학습 모델에 적용하여 자동으로 욕설문장을 필터링하는 실험을 진행하였다. 실험은 온라인 학습 플랫폼에서 초등학교 4-6학년의 채팅내역을 수집하였고, 채팅 내역중에 욕설로 신고되어 판정된 욕설문장을 함께 수집하여 사전학습된 언어모델을 통해 훈련하였다. 실험결과, 욕설문장을 분류한 결과 75%의 정확률을 보이는 것으로 분석되어 학습 데이터가 충분히 보완된다면, 초등학생이 사용하는 온라인 플랫폼에서 적용할 수 있음을 보여주었다.

E-커머스 사용자의 평점과 리뷰 유용성이 상품 추천 시스템의 성능 향상에 미치는 영향 분석 (Analysis of the Effects of E-commerce User Ratings and Review Helfulness on Performance Improvement of Product Recommender System)

  • ;이병현;최일영;정재호;김재경
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.311-328
    • /
    • 2022
  • 정보통신기술 발달로 스마트폰이 보급되면서, 온라인 쇼핑몰 서비스는 컴퓨터가 아닌 모바일로도 사용이 가능해졌다. 그로 인해 온라인 쇼핑몰 서비스를 이용하는 사용자는 급격히 증가하게 되고, 거래되는 제품의 종류 또한 방대해지고 있다. 따라서 기업은 이익을 최대화하기 위해서는 사용자가 관심을 가질만한 정보를 제공해주는 것이 중요하다. 이를 위해 사용자의 과거 행동 데이터나 행동 구매 기록을 기반으로 사용자에게 필요한 정보 또는 제품을 제시하는 것을 추천 시스템이라 한다. 현재 추천 서비스를 제공하는 대표적인 해외 기업으로는 Netflix, Amazon, YouTube 등이 있다. 최근 이러한 전자상거래 사이트에서는 사용자가 해당 제품에 대한 리뷰가 유용한지에 대해 투표할 수 있는 기능을 제공하고 있다. 이를 통해, 사용자는 유용하다고 판단되는 제품에 대한 리뷰와 평점을 참고하여 구매 의사결정을 내린다. 따라서 본 연구에서는 제품에 대한 평점과 리뷰의 유용성 정보 간의 상관관계를 파악하고, 리뷰의 유용성 정보를 추천 시스템에 반영하여 추천 성능을 확인하고자 한다. 또한 대부분의 사용자들은 만족한 제품에만 평점을 부여하는 경향이 있고 제품에 대한 평점이 높을수록 구매 의도가 높아지는 경향이 있다. 따라서 전통적인 협업 필터링 기법에 모든 평점을 반영한 결과와 4점과 5점 평점만을 반영한 추천 성능 결과를 비교하고자 한다. 이를 위해 본 연구에서는 Amazon에서 수집한 전자 제품 데이터를 사용하였으며, 실험 결과는 평점과 리뷰 유용성 정보 간 상관관계가 있는 것으로 확인되었다. 또한 모든 평점과 4점과 5점 평점만을 추천 시스템에 반영하여 추천 성능을 비교한 결과, 4점과 5점 평점만을 추천 시스템에 반영한 결과의 추천 성능이 더 높게 나타났다. 그리고 리뷰 유용성 정보를 추천 시스템에 반영한 결과는 리뷰가 유용할수록 추천 성능은 높게 나타나는 것으로 확인하였다. 따라서 이러한 실험 결과는 향후 개인화 추천 서비스의 성능 향상에 기여하고, 전자상거래 사이트에 시사점을 제공할 수 있을 것으로 본다.

웹 마이닝을 이용한 개인 광고기법에 관한 연구 (A Study on Personalized Advertisement System Using Web Mining)

  • 김은수;송강수;이원돈;송정길
    • 한국컴퓨터정보학회논문지
    • /
    • 제8권4호
    • /
    • pp.92-103
    • /
    • 2003
  • 최근 전자상거래의 발전과 인터넷 사용자의 급증으로 온라인 상에서 수많은 광고들이 서비스되고 있다. 하지만 이러한 광고서비스는 사용자들의 성향 분석을 기초로 하기보다는 해당 광고의 일방적 서비스에 그치고 있다. 따라서 많은 웹사이트들이 해당 광고의 효율적 서비스를 위해 개인화된 광고서비스를 원하고 있고 해당 서버의 로그 분석을 통한 서비스를 연구 및 시행하고 있다. 본 논문에서는 서버측 로그데이터의 분석이 아닌 로컬 시스템의 로그데이터를 이용하여 사용자의 선호도와 성향을 분석한다. 또한 해당 사이트 별 분류 카테고리를 만들어 해당 분류의 가중치를 부여함으로써 개인화된 광고 시스템을 제안하려고 한다. 사용자의 선호도 분석은 웹 개인화 기법 중 협업 필터링의 대상이 되는 사용자 선호도 정보를 방문 사이트 분류에 사용하고 학습에이전트의 대상이 되는 인터넷 사용자의 행동을 해당 사이트의 방문횟수로 가정하여 사용자의 성향분석을 시도하였다. 사용자의 선호도를 벡터로 표현하고, 성향분석 결과를 단순 적용형태가 아닌 연속적 데이터로 간주하였으며 이전 데이터와 이후 데이터의 성향분석 변화를 제안하는 기법을 이용하여 새롭게 분석하고 피드백 시킴으로써 지속적인 갱신과 적용을 할 수 있도록 제안하였다. 이러한 결과를 통해 해당 분류의 광고들을 선정하고 선정된 광고에 사용자 성향분석과 동일한 과정을 적용시킴으로써 차별화된 광고 서비스를 제공할 수 있는 방법을 제시하였다.

  • PDF

Improvement of a Product Recommendation Model using Customers' Search Patterns and Product Details

  • Lee, Yunju;Lee, Jaejun;Ahn, Hyunchul
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권1호
    • /
    • pp.265-274
    • /
    • 2021
  • 본 논문에서는 검색 키워드와 상품 상세정보를 활용한 Doc2vec 기반의 새로운 추천 모형을 제안한다. 지금까지 추천 시스템에 관한 많은 기존 연구에서는 고객의 구매 이력이나 평점 같은 정형 데이터만을 사용하는 협업 필터링(CF) 알고리즘에 기반한 추천 모델이 제안되었다. 그러나 CF에서 온라인 고객 리뷰와 같은 비정형 데이터를 사용하면, 보다 나은 추천결과를 도출할 수 있다. 이에 본 연구에서는 기존 연구에서 거의 활용되지 않았던 검색 키워드 정보와 상품 상세정보를 제품 추천에 활용할 것을 제안한다. 본 연구의 제안 모형은 고객이 구매한 상품에 대한 평점, 검색어, 상품 상세정보를 종합적으로 고려한 CF 알고리즘을 이용해 추천결과를 생성한다. 이 때 비정형 데이터로부터 정량적인 패턴을 추출하기 위한 방법으로는 Doc2vec이 적용된다. 실험 결과 제안 모형이 기존 추천 모형보다 더 나은 성능을 보이는 것을 알 수 있었고, 검색어 및 상품 상세정보가 추천에 유의한 영향을 미치는 것을 확인하였다. 본 연구는 고객의 온라인 행동 정보를 추천시스템에 적용하였다는 점과 전통적인 CF의 한계 중 하나인 콜드 스타트 문제를 완화하였다는 점에서 학술적 의의가 있다.

RFM 다차원 분석 기법을 활용한 암시적 사용자 피드백 기반 협업 필터링 개선 연구 (A Study on Improvement of Collaborative Filtering Based on Implicit User Feedback Using RFM Multidimensional Analysis)

  • 이재성;김재영;강병욱
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.139-161
    • /
    • 2019
  • 전자상거래 시장의 이용이 보편화 되며 고객들에게 좋은 품질의 물건을 어디서, 얼마나 합리적으로 구매할 수 있는지가 중요해졌다. 이러한 구매 심리의 변화는 방대한 정보 속에서 오히려 고객들의 구매 의사결정을 어렵게 만드는 경향이 있다. 이때 추천 시스템은 고객의 구매 행동을 분석하여 정보 검색에 드는 비용을 줄이고 만족도를 높이는 효과가 있다. 하지만 대부분 추천 시스템은 책이나 영화 등 동종 상품 분류 내에서만 추천이 이뤄진다. 왜냐하면 추천 시스템은 특정 상품에 매긴 구매 평점 데이터를 기반으로 해당 상품 분류 내 유사한 상품에 대한 구매 만족도를 추정하기 때문이다. 그밖에 추천 시스템에서 사용하는 구매 평점의 신뢰성에 대한 문제도 제시되고 있으며 오프라인에선 평점 확보 자체가 어렵다. 이에 본 연구에서는 일련의 문제를 개선하기 위해 RFM 다차원 분석 기법을 활용하여 기존에 사용하던 고객의 구매 평점을 객관적으로 대체할 수 있는 새로운 지표의 활용 가능성을 제안하는 바이다. 실제 기업의 구매 이력 데이터에 해당 지표를 적용해서 검증해본 결과 높게는 약 55%에 해당하는 정확도를 기록했다. 이는 총 4,386종에 달하는 이종 상품들 중 한번도 이용해 본 적 없는 상품을 추천한 결과이기 때문에 검증 결과는 상대적으로 높은 정확도와 활용가치를 의미한다. 그리고 본 연구는 오프라인의 다양한 상품데이터에서도 적용할 수 있는 범용적인 추천 시스템의 가능성을 시사한다. 향후 추가적인 데이터를 확보한다면 제안하는 추천 시스템의 정확도 향상도 기대할 수 있다.

상호작용성에 의한 SNS 영향유저 선정에 관한 연구 : 연속적인 참조관계가 있는 블로고스피어를 중심으로 (Finding Influential Users in the SNS Using Interaction Concept : Focusing on the Blogosphere with Continuous Referencing Relationships)

  • 박현정;노상규
    • 한국전자거래학회지
    • /
    • 제17권4호
    • /
    • pp.69-93
    • /
    • 2012
  • 블로그, 페이스북, 트위터와 같은 SNS(Social Network Service)는 유저와 포스트를 노드로, 유저와 포스트, 포스트와 포스트, 또는 유저와 유저 사이에 형성되는 다양한 관계를 링크로 하는 그래프로 표현될 수 있다. 본 논문은 이러한 그래프 구조를 분석하여 다른 유저들의 생각과 행동에 영향을 미치는 영향 유저를 선별하는 방법에 대해 논한다. 기본적인 패러다임으로 기존의 투표성 개념이 아닌, 다양한 시맨틱 웹 자원의 중요도를 평가하기 위해 제안된 상호작용성 개념을 초기 SNS의 하나인 블로고스피어의 영향력 평가에 적용함으로써, 여러 모의 실험을 통해 그 타당성과 적용 가능성을 입증하였다. 모의 실험은 각 대안이 제공하는 결과의 타당성 정도에 따라 성능을 비교 분석할 수 있는 네트워크 모형을 디자인하여 사용하였다. 또, 이러한 네트워크 모형에 대한 링크 가중치 튜닝의 결과 변화를 살펴봄으로써, 가중치 조합의 차이에서 발생하는 실험 오차를 줄이고, 실제 적용의 용이함을 비교 분석하였다. 부가적으로, 스팸 필터링 목적에서 포스트 컨텐츠 점수를 링크 구조 기반 방법 안에 포함시킬 수 있는 방법도 제안하였다. 본 연구는 SNS 영향유저 선별에 대한 연구의 출발점으로서, 다음과 같은 점에서 기존 연구와 구별된다. 첫째, 스크랩, 댓글, RSS, 친구 등 기존 연구에서 유의미한 속성으로 간주했지만, 그래프 기반 방법으로 함께 고려할 수 없었던 다양한 영향력 속성들을 종합적으로 반영할 수 있는 그래프 기반 영향력 평가 프레임웍을 제시한다. 둘째, 이 프레임웍은 영향력이 높은 개체들과 상호작용하는 개체가 영향력이 낮은 개체들과 상호작용하는 개체보다 높은 영향력을 갖게 되는 일반적인 현상을 구현할 수 있는 양방향성을 반영한다. 셋째, 영향력 평가 면에서 다른 사람들의 추종액션을 유발한 정도를 가장 중요한 요인으로 고려하여, 일련의 참조관계에 대해 기존의 페이지랭크나 HITS(Hypertext Induced Topic Selection)와는 다른 관점에서 접근하였다.