• Title/Summary/Keyword: 행동패턴분석

Search Result 469, Processing Time 0.025 seconds

Expression Analysis System of Game Player based on Multi-modal Interface (멀티 모달 인터페이스 기반 플레이어 얼굴 표정 분석 시스템 개발)

  • Jung, Jang-Young;Kim, Young-Bin;Lee, Sang-Hyeok;Kang, Shin-Jin
    • Journal of Korea Game Society
    • /
    • v.16 no.2
    • /
    • pp.7-16
    • /
    • 2016
  • In this paper, we propose a method for effectively detecting specific behavior. The proposed method detects outlying behavior based on the game players' characteristics. These characteristics are captured non-invasively in a general game environment and add keystroke based on repeated pattern. In this paper, cameras were used to analyze observed data such as facial expressions and player movements. Moreover, multimodal data from the game players was used to analyze high-dimensional game-player data for a detection effect of repeated behaviour pattern. A support vector machine was used to efficiently detect outlying behaviors. We verified the effectiveness of the proposed method using games from several genres. The recall rate of the outlying behavior pre-identified by industry experts was approximately 70%. In addition, Repeated behaviour pattern can be analysed possible. The proposed method can also be used for feedback and quantification about analysis of various interactive content provided in PC environments.

Longitudinal Patterns of Stages of Changes in Smoking Behaviors among Korean Adult Smokers: Applying the Transtheoretical Model of Change (범이론적 모델에 기반을 둔 흡연자의 금연행동 변화단계에 대한 탐색적 연구)

  • Park, Hyunyong;Jun, Jina;Sohn, Sunju
    • Korean Journal of Social Welfare Studies
    • /
    • v.49 no.1
    • /
    • pp.5-28
    • /
    • 2018
  • Smoking is one of the important public health concerns because it is preventable causes regarding individuals' negative health consequences and increased social and economic cost. However, few studies have examined longitudinal patterns of stages of changes(SOC) in smoking behaviors among the general population. The purpose of the study is to explore the latent patterns of SOC over time among Korean adult smokers using the 2008-2016 Korea Welfare Panel Study. A repeated measure latent class analysis is employed in the present study. The finding of the present study are as follows: First, four latent groups were identified: (1) action/maintenance stage(33.6%), (2) contemplation/preparation to action/maintenance stage(14.8%), (3) continuously contemplation/preparation stage(29.6%), and (4) continuously pre-contemplation stage(22.1%). Second, the results of a multinomial logistic regression found that socio-demographic and clinical characteristics were associated with the identified longitudinal patterns of smoking behaviors. Compared to a continuously pre-contemplation stage, higher levels of depressive symptoms and drinking behavior were associated with increased odds of being in action/maintenance stage. The findings of the present study highlight that a tailored intervention is needed for individuals with continuously pre-contemplation stage and contemplation stage.

Abnormal Behavior Pattern Identifications of One-person Households using Audio, Vision, and Dust Sensors (음성, 영상, 먼지 센서를 활용한 1인 가구 이상 행동 패턴 탐지)

  • Kim, Si-won;Ahn, Jun-ho
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.95-103
    • /
    • 2019
  • The number of one person households has grown steadily over the recent past and the population of lonely and unnoticed death are also observed. The phenomenon of one person households has been occurred. In the dark side of society, the remarkable number of lonely and unnoticed death are reported among different age-groups. We propose an unusual event detection method which may give a remarkable solution to reduce the number of the death rete for people dying alone and remaining undiscovered for a long period of time. The unusual event detection method we suggested to identify abnormal user behavior in their lives using vision pattern, audio pattern, and dust pattern algorithms. Individually proposed pattern algorithms have disadvantages of not being able to detect when they leave the coverage area. We utilized a fusion method to improve the accuracy performance of each pattern algorithm and evaluated the technique with multiple user behavior patterns in indoor areas.

An analysis for Purpose of Visiting via GPS Sequences Learning of Topic Models (GPS 데이터 기반 주제 학습을 통한 모바일폰 사용자 방문 목적 분석)

  • Kang, Myung-Gu;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.274-277
    • /
    • 2011
  • 최근 많은 연구들이 사람들의 삶을 예측하기 위해 개인의 일상적인 패턴을 표현하는 구조를 찾아내는 것을 목표로 하고 있다. 이러한 목표를 위해 사용되는 데이터 중에서 핸드폰을 통해 수집된 데이터는 사용자가 항상 소지하고 있다는 점에서 그 가치가 높다. 그 중에서도 GPS 데이터는 다른 로그 데이터에 비해 가시적이기 때문에 개인의 일상을 표현하는데 더 효율적이다. 본 연구는 핸드폰에서 수집한 GPS 데이터를 Latent Dirichlet Allocation (LDA) 모델에 적용하여 사용자의 행동을 분석하는 주제를 다루려고 한다. 특히 이 논문에서는 개인의 현재 장소가 행동에 영향을 크게 미치는 요소라 가정하고 사용자가 특정 지역을 찾아갔을 때 방문 목적을 찾는 것으로 행동 분석을 구체화하였다. 아래의 내용에서 인사동에서 수집한 GPS 데이터를 이 모델에 적용하여 사용자에게 중요한 위치들로 이루어진 '주제들'을 발견하고, 인사동 방문 목적을 추론하는 실험을 설명할 것이다.

A Study on the Analysis of Customer Purchasing Pattern for eCRM (eCRM을 위한 고객구매패턴 분석에 관한 연구)

  • Kim, Nam-Ho;Lee, Do-Heon
    • Annual Conference of KIPS
    • /
    • 2001.04a
    • /
    • pp.15-18
    • /
    • 2001
  • 개별화 웹 마케팅은 본질적으로 고객지향의 패러다임이다. 즉, 개별 고객의 특수한 니즈를 개별적으로 파악해서 각각의 고객에게 차별화된 서비스를 제공하는 것이 그 핵심이다. 웹 서버의 고객이 접근한 상품의 로그파일에 데이터마이닝의 연관규칙 기술을 이용하게 되면 고객행동 패턴의 파악 및 예측을 위한 기법으로 활용할 수 있다. 본 연구에서는 웹 사용자의 교차 판매를 위한 원투원 마케팅에 필요한 접근패턴을 분석하고자 하며, 이는 고객의 상품에 대한 접근이 기록된 액세스 로그 데이터베이스의 분석을 통하여 이루어진다. 이들 데이터 처리와 교차판매 지원을 위한 데이터마이닝 모델링, 이를 통한 원투원 마케팅 모델 제시, 그리고 이의 활용이 고객관계관리(eCRM)에 미치는 효과를 제시한다.

  • PDF

Meta-Modeling to Detect Attack Behavior for Security (보안을 위한 공격 행위 감지 메타-모델링)

  • On, Jinho;Choe, Yeongbok;Lee, Moonkun
    • Journal of KIISE
    • /
    • v.41 no.12
    • /
    • pp.1035-1049
    • /
    • 2014
  • This paper presents a new method to detect attack patterns in security-critical systems, based on a new notion of Behavior Ontology. Generally security-critical systems are large and complex, and they are subject to be attacked in every possible way. Therefore it is very complicated to detect various attacks through a semantic structure designed to detect such attacks. This paper handles the complication with Behavior Ontology, where patterns of attacks in the systems are defined as a sequences of actions on the class ontology of the systems. We define the patterns of attacks as sequences of actions, and the attack patterns can then be abstracted in a hierarchical order, forming a lattice, based on the inclusion relations. Once the behavior ontology for the attack patterns is defined, the attacks in the target systems can be detected both semantically and hierarchically in the ontology structure. When compared to other attack models, the behavior ontology analysis proposed in this paper is found to be very effective and efficient in terms of time and space.

Investigation and Analysis of Dark Patterns in Advertisements of News Websites (뉴스 사이트별 다크패턴(Dark Patterns) 광고 실태조사 및 분석)

  • Jun-Young Han;Sang-Jun Yeon;Jun-Hyoung Oh
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.3
    • /
    • pp.515-525
    • /
    • 2024
  • Dark patterns refer to intentionally deceptive design techniques used by online service providers to hide necessary information, preventing users from taking desired actions or luring them into unintended behaviors. In this study, we analyzed the prevalence of dark patterns such as banners, advertorials, pop-ups, and video ads, and their impact on users across the top 200 news websites worldwide. The research revealed that there is a minimal correlation between banner ads and user bounce rates or unique visitors. Consequently, the main screen moving banner and headline news screen moving banner were most frequently observed in South America, while the headline news screen fixed banner was most commonly observed in Asia. All other categories were predominantly observed in Europe, making European websites the most diverse and abundant in various dark patterns.

A Probabilistic Tracking Mechanism for Luxury Purchase Implemented by Hidden Markov Model, Bayesian Inference, Customer Satisfaction and Net Promoter Score (고객만족, NPS, Bayesian Inference 및 Hidden Markov Model로 구현하는 명품구매에 관한 확률적 추적 메카니즘)

  • Hwang, Sun Ju;Rhee, Jung Soo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.6
    • /
    • pp.79-94
    • /
    • 2018
  • The purpose of this study is to specify a probabilistic tracking mechanism for customer luxury purchase implemented by hidden Markov model, Bayesian inference, customer satisfaction and net promoter score. In this paper, we have designed a probabilistic model based on customer's actual data containing purchase or non-purchase states by tracking the SPC chain : customer satisfaction -> customer referral -> purchase/non-purchase. By applying hidden Markov model and Viterbi algorithm to marketing theory, we have developed the statistical model related to probability theories and have found the best purchase pattern scenario from customer's purchase records.

IoT를 사용한 라이프로그 빅데이터기반 라이프스타일 (생활패턴) 분석 및 웰니스 예측케어 서비스시스템

  • Jo, Wi-Deok;Yang, Seung-Guk;Choe, Seon-Tak;Baek, Jae-Sun;Min, Myeong-Gi;Lee, Yeong-Gwon;Park, Gyeong-Chan;Lee, Gyu-Pil
    • Information and Communications Magazine
    • /
    • v.31 no.12
    • /
    • pp.17-24
    • /
    • 2014
  • 빅데이터, IoT, 클라우드 인프라 등 기술의 발달에 따라 일상생활 중에서도 개인과 환경의 변화에 대해 실시간 데이터 수집이 용이하게 되었다. 이를 활용하여 개인의 다양한 특성과 상황을 인지하고 다면적으로 의미를 분석할 수 있는 개인의 라이프스타일(lifestyle, 생활습관) 분석 기술이 중요하게 부각되고 있다. 이 라이프스타일 데이터는 개인의 질병이나 사회 심리적 문제의 원인 분석과 미래 트렌드의 변화예측을 할 수 있는 중요한 근거로 활용된다. 최근 이를 위한 연구로서 활동량, 스트레스, 위치, 수면 등의 라이프스타일 패턴을 추출하여 체계적인 프로세스로 삶의 질을 향상시키는 웰니스 (Wellness) 예측케어 서비스 연구와 서비스들이 활발히 진행되고 있다. 하지만 이러한 서비스를 제공하기에 앞서 개인의 복잡한 라이프스타일 패턴의 추출이 단편적으로만 이뤄지고 있어서, 패턴들 사이의 복잡한 관계를 분석하거나 연계 서비스로의 확장 및 라이프스타일 패턴의 재사용적인 측면에서의 문제가 어려운 이슈가 되고 있다. 이 때문에 웰니스 서비스의 신뢰도가 낮아 사용자가 단순히 재미로 느끼는 수준이거나 일회성에 그치는 모바일 어플리케이션 서비스를 제공받는 경우가 다반사이다. 본 논문에서는 IoT환경에서 다양한 스마트 디바이스에 의해 수집되는 라이프로그로 부터 라이프스타일 패턴 추출 및 모델링, 라이프스타일 패턴 분석으로부터 개인의 행동 추론 및 예측, 원인파악과 관련 지표를 정량적으로 설계하는 분석 엔진 개발 방안, 서비스 디자인을 통하여 실효적인 생활개선의 변화를 유도하는 기술, 개인의 심리적 특성까지 고려한 신뢰성 높은 케어 서비스 제공까지의 전반적인 웰니스 예측케어 서비스시스템 프로세스 및 플랫폼 설계 방안을 제시한다.

A Study on Hangul Writing Behavior (한글 필기행동의 연구)

  • Yi, Kwang-Oh
    • Annual Conference on Human and Language Technology
    • /
    • 1991.10a
    • /
    • pp.139-146
    • /
    • 1991
  • 한글 필기행동에서 나타나는 실수들을 분석하였다. 단어이하의 수준에서 오철(spelling error)와 오기(slips of the pen)가 관찰되었다. 오철은 부분적인 철자지식에 기인하는 것으로, 음소를 철자로 변환하는 과정에 영향을 받는 것임을 시사하는 사례가 발견되었다. 오기에는 지속 예기 생략 등이 있었으며, 철자정보를 운동패턴으로 변환하는 과정에서 나타나는 것 같았다. 또한 획과 관련된 실수들도 발견되었다. 전반적으로 필기과정에는 발음관련정보의 영향이 큰 것을 부정할 수 없었다.

  • PDF