• Title/Summary/Keyword: 핵 비등

Search Result 85, Processing Time 0.027 seconds

Enthalpy Rise for Pressure Loss of Spacer Grids of Dual Coolant Fuel (이중냉각연료에서 지지격자의 압력손실에 대한 엔탈피 증가)

  • Chun, Kun-Ho;Chun, Tae-Hyun;Shin, Chang-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3473-3478
    • /
    • 2007
  • A dual side cooling annular fuel having internal and external coolant channels has many advantages basically due to low fuel temperature and high DNBR margin, which can make a significant increase of core power density possible. So recently a 12x12 square annular fuel array was proposed for the fuel assembly to be reloaded without structural interference with operating reactors of OPR-1000s. Even through the inherent potential of the annular fuel on the high power density, it may be seriously eroded in the case of a severe unbalanced mass flux split to the internal and external channels in standpoint of DNB. Mass flux split is determined pressure drop characteristics between inner and outer channels. The spacer grids binding fuel array influence greatly the pressure drop in outer channels and the mass flux split. As an important factor of DNB behavior, the enthalpy differences at both channel exits were evaluated using the mass flux splits.

  • PDF

Ge(110) 표면에서 탄소 원자 확산에 대한 수소의 효과

  • Park, Ga-Ram;Jeong, Seok-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.127.2-127.2
    • /
    • 2016
  • 연구된 Si위의 흡착원자들의 확산 메커니즘들에 비해 Ge 표면에서의 확산 메커니즘은 잘 알려져 있지 않다. 최근 연구에 따르면, 수소가 덮인 Ge(110) 표면에서 그래핀 결정 핵생성은 비등방적이며, 낟알 둘레없이 웨이퍼 크기로 성장시킬 수 있음을 보였다. 본 연구에서는 VASP(Vienna Ab-initio Simulation Package)의 NEB(Nudged Elastic Band) 방법을 이용하여 수소가 덮인 Ge(110) 표면과 청결한 표면에서 탄소원자의 확산 과정과 확산에 따른 에너지 장벽을 계산 하였다. 계산 결과 수소가 덮인 표면에서의 탄소원자 확산은 체인 방향으로 각각 3.29 eV, 2.67 eV의 에너지 장벽을 가지고 청결한 표면에서는 탄소원자가 게르마늄 연결을 치환하며 확산한다. 이때 에너지 장벽은 0.82 eV이고 치환된 게르마늄이 확산할 때는 각각 0.64 eV, 0.59 eV의 에너지 장벽을 넘어야 한다. 결과적으로 수소가 덮인 표면에서보다 청결한 표면에서 탄소 확산 에너지 장벽이 낮으며, 청결한 표면에서는 탄소가 게르마늄을 치환하고 치환된 게르마늄이 확산할 확률이 높음을 알 수 있었다.

  • PDF

A Study for Evaporation Heat Transfer Characteristic of R22/Rl14 Refrigerant Mixtures in a Horizontal Tube (수평증발관내 R22/R114 혼합냉매의 열전달 특성에 관한 연구)

  • 윤치한;이종인;하옥남
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.502-510
    • /
    • 2000
  • Evaporation heat transfer characteristics were studied in a horizontal tube using R22/R114 non-azotropic refrigerant mixture. the heat transfer coefficient was high in the upper part for pure refrigerants, and heat transfer coefficient was low in the lower part for refrigerant mixtures. In the low quality region where nucleate boiling was dominant, the average heat transfer coefficient was low. In the region where forced convection was dominant, heat transfer coefficient was high. Results show that the heat transfer coefficient for pure refrigerants obtained by experiments were lower than those of Yoshida et al. but agreed well with Jung et al., and Chen et al. data. But the heat transfer coefficients for refrigerant mixtures were lower about 20% than those predicted by the equation for pure refrigerant.

  • PDF

Conjugate Analysis of Bubble Growth Involving Conduction in Solid (고체의 전도를 포함한 기포성장의 복합적 해석)

  • Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.265-273
    • /
    • 2003
  • Numerical analysis of bubble motion during nucleate boiling is performed by imposing a constant heat flux condition at the base of a heater which occurs in most of boiling experiments. The temporal and spatial variation of a solid surface temperature associated with the bubble growth and departure is investigated by solving a conjugate problem involving conduction in the solid. The vapor-liquid interface is tracked by a level set method which is modified to include the effects of phase change at the interface, contact angle at the wall and evaporative heat flux in a thin liquid micro-layer. Based on the numerical results, the bubble growth pattern and its interaction with the heating solid are discussed. Also, the effect of heating condition on the bubble growth under a micro-gravity condition is investigated.

General Energy-Dependent Transport Equation with Fission

  • Lee, Un-Chul;Pac, Pong-Youl
    • Nuclear Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.255-262
    • /
    • 1970
  • More detailed calculations of extension to general anisotropic transport equation with fission are studied. These calculations involve that the operator can be splitted into scattering and fission operators when we prove the completeness of general anisotropy. Applying these operators to the equation makes it easy to extract the slowing-down transient of zero-measure, and completely solves the transport equation. In addition, the number of the eigenvalues of the second anisotropy is classified with Cs unknown, B$_1$and B$_2$known constants.

  • PDF

Pre-strain Induced Anisotropy of Filled Natural Rubber (선인장에 의하여 유도된 천연고무의 비등방성)

  • Park, Byung-Ho
    • Elastomers and Composites
    • /
    • v.36 no.1
    • /
    • pp.30-36
    • /
    • 2001
  • The objective of this study was to investigate factor that influences the development of anisotropy in carbon black filled natural rubber vulcanizates. Chain orientation affects tensile strength, stiffness. Parallel sample shows low stress at low deformation, but have high stiffness at high deformation compared to isotropic or perpendicular samples. This study shows that natural rubber(NR) exhibits much larger tensile anisotropy at high strains than SBR. It seems that the parallel sample of NR is dominated by orientation effect at high strains. This oriented chain is expected to act as nuclei for following crystallization during second stretching and facilitates the strain-induced crystallization.

  • PDF

A study of Nucleate Boiling Heat Transfer from Artificial Nucleation Sites (세공(細孔)을 갖는 전열면(傳熱面)에서의 핵비등(核沸騰) 열전달(熱傳達)에 관(關)한 연구(硏究))

  • Yim, Chang-Soon
    • Solar Energy
    • /
    • v.1 no.1
    • /
    • pp.30-36
    • /
    • 1981
  • Pool Boiling heat transfer from controlled arrays of artificial nucleation sites was studied experimentally. Distilled water were boiled from artificial sites of uniform size, shape and spacing, drilled in superfinished copper horizontal surfaces at site density of 16, 25, 36, 49, 64, 81, 100 per $2.25cm^2$. The results confirm the boiling heat transfer from artificial sites can be improved by increasing the site density N/A or temperature difference ${\Delta}T$ or both. Following experimental correlation were developed for predicting the heat transfer rate from the heating surface which has artificial sites. $$q/A = C(T_s - T_{sat})^{1.811}(N/A)^{0.41}$$

  • PDF

Nucleate Boiling Heat Transfer from Micro Finned Surfaces with Subcooled FC-72 (FC-72를 이용한 마이크로 핀 표면에서의 핵비등 열전달)

  • Lim, Tae-Woo;You, Sam-Sang;Kim, Hwan-Sung
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.20 no.3
    • /
    • pp.410-415
    • /
    • 2008
  • To evaluate the performance of nucleate boiling heat transfer between a plain and micro-fin surfaces, the experimental tests have been carried out under various conditions with fluorinert liquid FC-72, which is chemically and electrically stable. Two kinds of micro fins with the dimensions of $200{{\mu}m}{\times}20{{\mu}m}$ and $100{{\mu}m}{\times}10{{\mu}m}$ (width x height) were fabricated on the surface of a silicon chip. The experiments were performed on the liquid subcooling of 5, 10 and 20K under the atmospheric condition. The presented data showed a similar trend in the comparison with result of Rainey & You. Due to its expanded surface areas, the heat flux properties has been significantly enhanced on micro-fin surface comparing to the plain surface.

Study on the characteristics of nucleate boiling heat transfer with changing of surface roughness (표면거칠기의 변화에 따른 핵비등열전달의 특성에 관한 연구)

  • 김춘식;정대인;배종욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.64-78
    • /
    • 1983
  • In nucleate boiling, bubbles are created by the expansion of entrapped gas or vapor at small cavities in the surface of heat transfer. Namely, surface roughness is the important factor of heat transfer. This paper deals with the characteristics of boiling curve according to surface roughness. Freon-113 is used as the experimental fluid. The results are as follows; 1. In the case of the same as "q=C$\Delta$T$^{n}$ ", the lower numberical index "n", the larger heat transfer coefficient and the lower wall superheat "$\Delta$T" is obtained for the rougher surface. 2. In the working of every kind of heat transfer sruface with boiling, improvement of capabilities of heat transfer can be devised by adding suitable roughness on the heat transfer surface. 3. When the metal nets of moderate mesh number are established, the capabilities of heat transfer can be improved in evaporation of liquid in vessels. But in the case that the sucession of bubbles in checked by using the nets which are too tight, the generation of bubbles union decreases critical heat flux. decreases critical heat flux.

  • PDF

The Local Measurements of Single Phase and Boiling Heat Transfer by Confined Planar Impinging Jets (평면충돌제트에 의한 단상 및 비등 열전달의 국소적 측정)

  • Wu, Seong-Je;Shin, Chang-Hwan;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.895-901
    • /
    • 2004
  • Single-phase convection and nucleate boiling heat transfer were locally investigated for confined planar water jets. The detailed distributions of the wall temperature and the convection coefficient as well as the typical boiling curves were discussed. The curve for the single-phase convection indicated the developing laminar boundary layer, accompanied by monotonic increase of the wall temperature in the stream direction. Boiling was initiated from the furthest downstream as heat flux increased. Heat transfer variation according to the streamwise location was reduced as heat flux increased enough to create the vigorous nucleate boiling. Velocity effects were considered for the confined free-surface jet. Higher velocity of the jet caused the boiling incipient to be delayed more. The transition to turbulence precipitated by the bubble-induced disturbance was obvious only for the highest velocity, which enabled the boiling incipient to start in the middle of the heated surface, rather than the furthest downstream as was the case of the moderate and low velocities. The temperature at offset line were somewhat tower than those at the centerline for single-phase convection and partial boiling, and these differences were reduced as the nucleate boiling developed. For the region prior to transition, the convection coefficient distributions were similar in both cases while the temperatures were somewhat lower in the submerged jet. For single-phase convection, transition was initiated at $x/W{\cong}2.5$ and completed soon for the submerged jet, but the onset of transition was retarded to the distance at $x/W{\cong}6$ for the fee-surface jet.