• Title/Summary/Keyword: 해침

Search Result 42, Processing Time 0.034 seconds

Late Quaternary Sedimentation on the Continental Shelf off the South-East Coast of Korea -A Further Evidence of Relict Sediments- (韓半島 南東海域 大陸棚 海底에서의 第四期 後期의 推積作用)

  • Park, Yong-Ahn
    • 한국해양학회지
    • /
    • v.20 no.3
    • /
    • pp.55-61
    • /
    • 1985
  • Two hundred suspended-matter samples were collected from the continental shelf off the southeast coast of Korea during September, 1981, March, 1982 and April 1983. Superficial bottom sediments on the shelf were also taken. Based on the alalyses of TSM distribution and concentration patterns, it is considered that finegrained suspended matters are restricted to nearshore-inner shelf showing a band or zone paralleling with coastal morphology. This fact suggests a limitation of "modern" fine grained sediments to a nearshore and inner shelf band. The sand deposits with the lower value of mud content (<5%) adjacent to the shelf break and on the outer shelf would probably be "relict" sediments (old beach sediments) deposited in response to a lower stand of sea level during the Pleistocene ice age. The transgression did little to alter the distribution of sand on the outer shelf in this particular study area. The progress of shore line was so rapid that a given locality was in the beach zone and subject to rapid longshore drift and extensive reworking only for a few years. Probably the most pronounced effect of the transgression was sorting of the sand, and at least partial winnowing out of the finer fractions.

  • PDF

Sediment Distributions and Depositional Processes on the Inner Continental Shelf Off the West Coast (Middle Part) of Korea (한국 서해 중부해역 대륙붕 퇴적물의 분포와 퇴적작용)

  • 박용안;최진용
    • 한국해양학회지
    • /
    • v.29 no.4
    • /
    • pp.357-365
    • /
    • 1994
  • The sediments on the continental shelf off the west coast (middle part) of Korea are divided into northern sandy deposits and southern muddy sediments, respectively. The sandy sediments consist dominantly of quartz and feldspar grains, representing mature-stage sediment in composition. Further-more, the presence of iron-stained quartz grain and glauconite does indicate that the sediments are similar to the relict sediments on the outer shelf of Yellow Sea and East China Sea. These sandy sediments are interpreted as a basal sands that were deposited during the transgression period due to sea-level rise after to last glacial maximum (LGM). The tidal deposits in the Namyang Bay, the west coast of Korea are divided vertically into the upper layer of muddy sediments and the lower layer of sandy sediments. the upper layer sediments contain abundant rock fragments, and are interpreted as the modern tetragenous sediments. The lower layer sediments, on the other hand, are rich in quartz and feldspar grains, representing high index of sediment maturity ratio. the lower layer sandy deposits show the presence of iron-stained.

  • PDF

Sedimentary History and Tectonics in the Southeastern Continental Shelf of Korea based on High Resolution Shallow Seismic Data. (고해상탄성파탐사자료에 의한 한국남동대륙붕의 퇴적사 및 조구조운동)

  • Min Geon Hong;Park Yong Ahn
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.1-8
    • /
    • 1997
  • Seismic stratigraphic analysis of the high resolution profiles obtained from the southeastern shelf of Korea divided the deposits into 4 sequences; 1) sequence D, 2) sequence C, 3) sequence B and 4) sequence A (Holocene sediments). Sequence D was deposited in shallow-water environment at west of the Yangsan Fault as the basin subsided. On the other hand, the eastern part was formed at the slope front. Landward part of the slope-front fill sediments were eroded and redeposited nearby slope due to the syndepositional tilting of the basin. This tilting probably resulted from the continuous closing of the Ulleung Basin. Sequence C is made of stacked successions of the lowstand fluvial sediments, transgressive sediments and marine highstand sediments derived from the paleo-river in the western part of the Yangsan Fault. Sequence C in the eastern part of the Yanshan Fault was formed at the shelf break. Progradation of the lowstand sediments resulted in broadening of the shelf. Sequence C in the eastern part was also tilted but the tilting was weaker than in Sequence D. During the formation of sequence B the tilting stopped and the point source instead of the line source started in both sides of the Yangsan Fault. Sequence B was composed of the highstand systems tract partially preserved around the Yokji island, lowstand systems tract mainly preserved in the Korea Trough and transgressive systems tract. After the stop of the tilting, the force of compression due to the closing of the Ulleung Basin may be released by the strike-slip faults instead of tilting.

  • PDF

A Seismic Study on Muddy Sediment Deposits in the Northern Shelf of the East China Sea (동중국해 북부대륙붕에 발달한 니질 퇴적체의 탄성파 연구)

  • Choi Dong-Lim;Lee Tae-Hee;Yoo Hae-Soo;Lim Dhong-Il;Huh Sik;Kim Kwang-Hee
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.633-642
    • /
    • 2005
  • We present the sedimentary sequence and distribution pattern of the late Holocene muddy deposits in the northern East China Sea shelf using the high-resolution 'Chirp' profiles. The seismic sedimentary sequence overlying acoustic basement (basal reflector-B) can be divided into two depositional units (Unit 1 and 2) bounded by erosional bounding surface (mid reflector-M). The lower Unit 1 above basal reflector-H is characterized by the acoustically parallel to subparallel reflections and channel-fill facies. The upper Unit 2, up to 7 m in thickness, shows seismically semi-transparent seismic facies and lenticular body form. On the base of sequence stratigraphic concept, these two sediment units have developed during transgression and highstand period, respectively, since the last sea-level lowstand. The transgressive systems tract (Unit 1) lie directly on the sequence boundary (reflector B) that have farmed during the last glacial maximum. The transgressive systems tract in this study consists mostly of complex of delta, fluvial, and tidal deposits within the incised valley estuary system. The maximum flooding surface (reflector M) corresponding to the top surface of transgressive systems tract is obviously characterized by erosional depression. The highstand systems tract (Unit 2) above maximum flooding surface is made up of the mud patch filled with the erosional depression. The high-stand mud deposits showing a circle shape just like a typhoon symbol locates about 140 km off the south of Cheju Island with water depth of $60\~90m$. Coverage area and total sediment volume of the mud deposits are about $3,200km^2$ and $10.7\times10^9\;m^3$, respectively. The origin of the mud patch is interpreted as a result of accumulating suspended sediments derived from the paleo-Yellow and/or Yangtze Rivers. The circular distribution pattern of the mud patch appears to be largely controlled by the presence of cyclonic eddy in the northern East China Sea.

Late Quaternary Sedimentation in the Yellow Sea off Baegryeong Island, Korea (한국 황해 백령도 주변해역 후 제4기 퇴적작용)

  • Cho, MinHee;Lee, Eunil;You, HakYoel;Kang, Nyen-Gun;Yoo, Dong-Geun
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.145-153
    • /
    • 2013
  • High-resolution chirp profiles were analyzed to investigate the echo types of near-surface sediments in the Yellow Sea off the Baegryeong Island. On the basis of seafloor morphology and subbottom echo characters, 7 echo types were identified. Flat seafloor with no internal reflectors or moderately to well-developed subbottom reflectors (echo type 1-1 and 1-2) is mainly distributed in the southern part of the study area. Flat seafloor with superposed wavy bedforms (echo type 1-3) is also distributed in the middle part. Mounded seafloor with either smooth surface or superposed bedforms (echo type 2-1, 2-2, and 2-3) occurs in the middle part of the study area. Irregular and eroded seafloor with no subbottom reflectors (echo type 3-1) is present in the northern part of the study area off the Baegryeong Island. According to the distribution pattern and sedimentary facies of echo types, depositional environments can be divided into three distinctive areas: (1) active erosional zone due to strong tidal currents in the northern part; (2) formation of tidal sand ridges in response to tidal currents associated with sea-level rise distributed in the middle part; and (3) transgressive sand sheets in the southern part. Such a depositional pattern, including 7 echo types, in this area reflects depositional process related to the sea-level rise and strong tidal currents during the Holocene transgression.

Late Quaternary Sequence Stratigraphy in Kyeonggi Bay, Mid-eastern Yellow Sea (황해 중동부 경기만의 후기 제4기 순차층서 연구)

  • Kwon, Yi-Kyun
    • Journal of the Korean earth science society
    • /
    • v.33 no.3
    • /
    • pp.242-258
    • /
    • 2012
  • The Yellow Sea has sensitively responded to high-amplitude sea-level fluctuations during the late Quaternary. The repeated inundation and exposure have produced distinct transgression-regression successions with extensive exposure surfaces in Kyeonggi Bay. The late Quaternary strata consist of four seismic stratigraphic units, considered as depositional sequences (DS-1, DS-2, DS-3, and DS-4). DS-1 was interpreted as ridge-forming sediments of tidal-flat and estuarine channel-fill facies, formed during the Holocene highstand. DS-2 consists of shallow-marine facies in offshore area, which was formed during the regression of Marine Isotope Stage (MIS)-3 period. DS-3 comprises the lower transgressive facies and the upper highstand tidal-flat facies in proximal ridges and forced regression facies in distal ridges and offshore area. The lowermost DS-4 rests on acoustic basement rocks, considered as the shallow-marine and shelf deposits formed before the MIS-6 lowstand. This study suggests six depositional stages. During the first stage-A, MIS-6 lowstand, the Yellow Sea shelf was subaerially exposed with intensive fluvial incision and weathering. The subsequent rapid and high amplitude rise of sea level in stage-B until the MIS-5e highstand produced transgressive deposits in the lowermost part of the MIS-5 sequence, and the successive regression during the MIS-5d to -5a and the MIS-4 lowstand formed the upperpart of the MIS-5 sequence in stage-C. During the stage-D, from the MIS-4 lowstand to MIS-3c highstand period, the transgressive MIS-3 sequence formed in a subtidal environment characterized by repetitive fluvial incision and channel-fill deposition in exposed area. The subsequent sea-level fall culminating the last glacial maximum (Stage-E) made shallow-marine regressive deposits of MIS-3 sequence in offshore distal area, whereas it formed fluvial channel-fills and floodplain deposits in the proximal area. After the last glacial maximum, the overall Yellow Sea shelf was inundated by the Holocene transgression and highstand (Stage-F), forming the Holocene transgressive shelf sands and tidal ridges.

Geochemical Study of the Jigunsan Shale: A Sequence Stratigraphic Application to Defining a Middle Ordovician Condensed Section, Taebacksan (Taebaeksan) Basin (직운산 세일층의 지화학적 연구: 태박산분지 오오도비스 중기 응축층 규명을 위한 시퀀스층서학적 적용)

  • Ryu, In-Chang;Ryu, Sun-Young;Son, Byeong-Kook
    • Economic and Environmental Geology
    • /
    • v.42 no.1
    • /
    • pp.27-53
    • /
    • 2009
  • A 30-m-thick Middle Ordovician Jigunsan Shale exposed along the southern limb of the Backunsan (Baekunsan) Syncline, Taebacksan (Taebaeksan) basin, has been simply considered as a transgressive shale sequence onlapped the underlying Maggol platform carbonates. Results of this study, however, suggest that majority of the Jigunsan Shale be interpreted as a regressive shale sequence downlapped onto a thin (ca. 240 cm) marine stratigraphic unit consisting of organic-rich (>3 wt.% of TOC) black shales in the lower Jigunsan Shale, which was accumulated at the time of maximum regional transgression. Detailed stratigraphic analysis in conjunction with XRD, XRF, and ICP-MS as well as Rock-Eval pyrolysis allows the thin marine stratigraphic unit in the Jigunsan Shale to define a condensed section that was deposited in a distinctive euxinic zone formed due to expansion of pycnocline during the early highstand phase. As well, a number of stratigraphic horizons of distinctive character that may have sequence stratigraphic or environmental significance, such as transgressive surface, maximum flooding surface, maximum sediment starvation surface, and downlap surface, are identified in the lower Jigunsan Shale. In the future, these stratigraphic horizons will provide very useful information to make a coherent regional stratigraphic correlation of the Middle Ordovician strata and to develop a comprehensive understanding on stratigraphic response to tectonic evolution as well as basin history of the Taebacksan Basin.

Clay Mineralogical Study on Genetic Environment of the Solnhofen Limestone (졸른호펜 석회암의 퇴적성인에 대한 점토광물학적 연구)

  • 문지원;박명호;송윤구;문희수
    • Economic and Environmental Geology
    • /
    • v.34 no.3
    • /
    • pp.243-254
    • /
    • 2001
  • Variation in relative contents of clay minerals was used to genetically interpret depositional environment of the Upper Jurassic Solnhofen limestone. Mineralogical examination of whole rocks and clay fractions indicates that the faule and flinz beds are composed mainly of calcite and quartz with minor amount of clay minerals such as illite, kaolinite, and smectite. Smectite shows a trend of illitization: illite layers increase with increasing of burial depth. With increasing burial depth, relative abundance of kaolinite with quartz and illite increases. This implies that the Solnhofen basin was formed during the transgression based on reduce of terrigenous influx.

  • PDF

Heavy Mineral Sands on the Southeastern Continental Shelf of Korea (한국 동남해역 대륙붕의 사립 중광물 분포)

  • CHOI, JIN YONG;PARK, YONG AHN;CHOI, KANG WON
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.271-278
    • /
    • 1995
  • A study of heavy mineral sands in terms of heavy mineral group and concentration has been carried out by analyzing 88 grab samples from the continental shelf off the southeast coast of Korea. Heavy mineral groups seem to be outlined and classified into four regions in the study area: 1) the western region; high concentrations of stable minerals, such as opaque mineral, magnetite, garnet and ZTR, 2) Korean Trough region; moderate concentrations of stable minerals, 3) the eastern region; abundant altered mineral and amphibole with minor of pyroxene concentration, and 4) the northeastern shelf-break region; low concentration of stable minerals with abundant altered minerals. The sedimentologic natures of four major heavy mineral regions (groupings) seem to be influenced by physical, dynamic and hydraulic milieu and also aerial and/or subaqueous weathering processes. It seems to be, further, plausible that shallow marine waves and currents associated with neritic dynamic condition of transgressive sea might be very effective on the concentration and groupings (sorting) of heavy min-erals in the surficial sediments of the continental shelf. The pyroxene-abundant heavy mineral suite (group), in fact, seems to suggest a sediment source from Japanese Islands.

  • PDF

Decomposition of Sediment size Curves into Log-Normal components: An Example from Cheju Strait Continental shelf (퇴적물입도곡선의 정규성분으로의 분해:제주해협의 예)

  • 공영세;김원식
    • 한국해양학회지
    • /
    • v.28 no.2
    • /
    • pp.114-120
    • /
    • 1993
  • Numerical method of nonlinear regression was introduced to characterize grain-size distribution more effectively than using the traditional textural parameters. This technique proved critical particularly to multimodal size distributions, as exemplified by samples from Cheju strait continental shelf. Grain-size analysis of samples collected from the Cheju Strait continental shelf reveals that 86% of the grain-size distributions are multimodal. As multimodal grain-size distribution deviates from the statistical (log) normal distribution, the grain-size parameters traditionally used in sediment studies do not describe the distribution efficiently. Therefore, the use of grain-size curves into elementary normal component curves was used. Means and standard deviations of 387 decomposed normal components were decided by a decomposition method (nonlinear least square regression) from 167 size curves of the Cheju Strait sediments. The mean values of decomposed normal components show peaks at 1-3 phi and 8-9 phi size classes. The plot of mean values of the coarse fraction normal components on the map shows a characteristic and complex areal distribution. On the basis of the areal distribution of the mean values of the components and that of isopach of total Plenipotence sediment, the areal distribution of layers composing a transgressive sand of Late Plenipotence age were revealed.

  • PDF