• Title/Summary/Keyword: 해저지형 변화

Search Result 150, Processing Time 0.02 seconds

Distributions of the Temperature and Salinity in Kamak Bay (가막만의 수온과 염분의 분포)

  • LEE Kyu-Hyong;CHO Kyu-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.1
    • /
    • pp.25-39
    • /
    • 1990
  • The distributions of the temperature and salinity in Kamak bay which has two channels and three sea bottom topographic parts were studied by taking the detailed hydrographic data at the ebb and flood during four seasons from May, 1988 to Feb., 1989. The general pattern of the distributions of characteristics which the temperature and salinity has in Kamak bay is basically formed by the topography and sea water movement of the bay. The changes of these distributions by seasons mainly come from the heating and cooling of the sea surface and the increase of the run-off. The bay has three remarkable water masses and the their general characteristics are follows: the inner bay water has a stagnation character influenced by the inland and the concave of the sea bottom in the north west, Yosu harbor water has an estuary character of the low salinity caused by the run-off of Somjin river and Yon Tung brooklet in the north east, and the outer bay water has an out-sea character, as it is located near by the big mouth in the south of the bay. The distributions of those water masses at the ebb and flood show some different features due to the flow patterns, and the daily changes of oceanic conditions at the vicinity of Hangdae-ri are so big that it may influence the habitation and production of the living things in the bay.

  • PDF

The Study on Accuracy Improvement of Estuary Riverbed Monitoring (하구하상 모니터링 정밀도 향상에 관한 연구)

  • Park, Un-Yong;Kim, Yong-Bo;Back, Ki-Suk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.3 s.26
    • /
    • pp.23-34
    • /
    • 2003
  • Currently, the efficiency of GPS has been increased in the various precise survey like as the control survey and the navigation etc. Also, it is widely used in the deformation analysis of the structure, the measurement of the marine tides, the measurement of the river level and the topographic monitoring of seabed or riverbed by combined the measurement equipment for depth. In this study, we intend to increase in efficiency of the topographic monitoring of seabed or riverbed by combined with DGPS, RTK GPS and echo sounder. For this study, we defined the error correction of the echo sounder with the experiment of water tank which is considered the characteristic of estuary riverbed and then we developed the s/w for 3-dimensional monitoring of estuary riverbed and applied the s/w to field test and improved the various problems. On analyzing topography of estuary riverbed by combined GPS with echo sounder, the draught error which is yielded to change of length from the water surface by the movement of survey vessel to the end of the transducer was eliminated by geometrical rearrangement and we defined the correction formula $z=BM+SAH-DBR_{(i)}-DRT-ED$. The sounding error about the echo sounder and characteristic of estuary riverbed was found by understanding the relation of average diameter ind residual error and we defined correction formula, $Y=0.00474{\ast}ln(X)-0.0045$ by the regression analysis. and then we verified applicability of correction formula.

  • PDF

Characteristics of Tidal Current and Tidal Residual Current in the Chunsu Bay, Yellow Sea, Korea based on Numerical Modeling Experiments (수치모델링 실험을 통한 서해 천수만의 조류와 조석잔차류 특성)

  • Jung, Kwang Young;Ro, Young Jae;Kim, Baek Jin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.4
    • /
    • pp.207-218
    • /
    • 2013
  • This study is based on a series of numerical modeling experiments to understand the circulation and its change in the Chunsu Bay (CSB), Yellow Sea of Korea. A skill analysis was performed for the tidal height and tidal current of the observation data using the amplitude and phase of the 4 major tidal constituents respectively for verification of modeling experimental results. As a result, most of the skill score was seen to be over 90%, so numerical model experiment results can be said to be in good agreement with the observed tidal height and tidal current. Tidal wave proceeded from the entrance of the CSB towards inside, and the tidal range gradually increased to the north. It took about 10 to 30 minutes for the tidal wave to reach to northern end. The tidal wave showed a characteristic to rotate counter-clockwise in the southern part. The tidal current flowed to the north-south direction along the bottom topography; the angle of the major axis appeared alongside the isobath. It showed the characteristics of reversing tidal current with the minor axis less than 10% of the major axis. The strength of the tidal residual current that is influenced by geographical factors including bathymetry and coastline showed the range of 1~30 cm/sec, greater in the south channel and smaller in northern Bay. Two pairs of cyclonic/anti-cyclonic eddies around Jukdo and 3~4 pairs of strong eddies at the southern part of CSB in hundreds of m to a few km size by relative vorticity derived from the tidal residual current.

Seasonal Accumulation Pattern and Preservation Potential of Tidal-flat Sediments: Gomso Bay, West Coast of Korea (조간대 퇴적물의 계절적 집적양상과 보존: 한국 서해안의 곰소만)

  • Chang, Jin-Ho;Choi, Jin-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.3
    • /
    • pp.149-157
    • /
    • 1998
  • Seasonal changes of topography, sediment grain size and accumulation rate in the Gomso-Bay tidal flat, west coast of Korea, have been studied in order to understand the seasonal accumulation pattern and preservation potential of the tidal-flat sediments. Seasonal levelings across the tidal flat show that the landward movement of both intertidal sand shoals and cheniers accelerates during the winter and typhoon periods, but it almost stops in summer when mud deposition is instead predominant at the middle and upper tidal flats. Seasonal variations of mean grain size were largest on the upper part of middle tidal flat where summer mud layers were eroded during the winter and typhoon periods. Measurements of accumulation depths from sea floor to basal plate reveal that accumulation rates were seasonally controlled according to the elevation of tidal-flat surface. The upper tidal flat where the accumulation rate of summer was generally higher than that of winter was characterized by a continuous deposition throughout the entire year, whereas in the middle tidal flat, sediment accumulations were concentrated in winter relative to summer and were intermittently eroded by typhoons. The lower tidal flat were deposited mostly in winter and eroded during summer typhoons. Can cores taken across the tidal flat reveal that sand-mud interlayers resulting from such seasonal changes of energy regime are preserved only in the upper part of the deposits and generally replaced by storm layers downcore. Based on above results, it is suggested that the storm deposits by winter storms and typhoons would consist of the major part of the Gomso-Bay sediments.

  • PDF

An Understanding the Opening Style of the West Philippine Basin Through Multibeam High-Resolution Bathymetry (고해상도 다중빔음향측심 지형자료 분석을 통한 서필리핀분지의 진화 연구)

  • Hanjin Choe;Hyeonuk Shin
    • Journal of the Korean earth science society
    • /
    • v.44 no.6
    • /
    • pp.643-654
    • /
    • 2023
  • The West Philippine Basin, an oceanic basin half the size of the Philippine Sea Plate, lies in the western part of the plate and south of the Korean Peninsula on the Eurasian Plate. It subducts beneath the Eurasian Plate and the Philippine Islands bordering the Ryukyu Trench and the Philippine Trench with 25-50% of this basin already consumed. However, the history of the opening of the basin's southern region has been a topic of debate. The non-transform discontinuity formed during the seafloor spreading is similar to the transform fault boundaries normally perpendicular to mid-ocean ridge axes; however, it was created irregularly due to ridge propagations caused by variations of mantle convection attributable to magma supply changes. By analyzing high-resolution multi-beam echo-sounding data, we confirmed that the non-transform discontinuity due to the propagating rift evolved in the entire basin and that the abyssal hill strike direction changed from E-W to NNW-SSE from the fossil spreading center. In the early stage of basin extension, the Amami-Sankaku Basin was rotated 90 degrees clockwise from its current orientation, and it bordered the Palau Basin along the Mindanao Fracture Zone. The Amami-Sankaku Basin separated from the Palau Basin while the spreading of the West Philippine Basin began with a counter-clockwise rotation. This indicates that the non-transform discontinuities formed by a sudden change in magma supply due to the drift of the Philippine Sea Plate and simultaneously with the rapid changes in the spreading direction from ENE-WSW to N-S. The Palau Basin was considered to be the sub-south of the West Philippine Basin, but recent studies have shown that it extends into an independent system. Evidence from sediment layers and crustal thickness hints at the possibility of its existence before the West Philippine Basin opened, although its evolution continues to be debated. We performed a combined analysis using high-resolution multi-beam bathymetry and satellite gravity data to uncover new insights into the evolution of the West Philippine Basin. This information illuminates the complex plate interactions and provides a crucial contribution toward understanding the opening history of the basin and the Philippine Sea Plate.

Numerical Hydrodynamic Modeling Incorporating the Flow through Permeable Sea-Wall (투수성 호안의 해수유통을 고려한 유동 수치모델링)

  • Bang, Ki-Young;Park, Sung Jin;Kim, Sun Ou;Cho, Chang Woo;Kim, Tae In;Song, Yong Sik;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.2
    • /
    • pp.63-75
    • /
    • 2013
  • The Inner Port Phase 2 area of the Pyeongtaek-Dangjin Port is enclosed by a total of three permeable sea-walls, and the disposal site to the east of the Inner Port Phase 2 is also enclosed by two permeable sea-walls. The maximum tidal range measured in the Inner Port Phase 2 and in the disposal site in May 2010 is 4.70 and 2.32 m, respectively. It reaches up to 54 and 27%, respectively of 8.74 m measured simultaneously in the exterior. Regression formulas between the difference of hydraulic head and the rate of interior water volume change, are induced. A three-dimensional numerical hydrodynamic model for the Asan Bay is constructed incorporating a module to compute water discharge through the permeable sea-walls at each computation time step by employing the formulas. Hydrodynamics for the period from 13th to 27th May, 2010 is simulated by driving forces of real-time reconstructed tide with major five constituents($M_2$, $S_2$, $K_1$, $O_1$ and $N_2$) and freshwater discharges from Asan, Sapkyo, Namyang and Seokmoon Sea dikes. The skill scores of modeled mean high waters, mean sea levels and mean low waters are excellent to be 96 to 100% in the interior of permeable sea-walls. Compared with the results of simulation to obstruct the flow through the permeable sea-walls, the maximum current speed increases by 0.05 to 0.10 m/s along the main channel and by 0.1 to 0.2 m/s locally in the exterior of the Outer Sea-wall of Inner Port. The maximum bottom shear stress is also intensified by 0.1 to 0.4 $N/m^2$ in the main channel and by more than 0.4 $N/m^2$ locally around the arched Outer Sea-wall. The module developed to compute the flow through impermeable seawalls can be practically applied to simulate and predict the advection and dispersion of materials, the erosion or deposion of sediments, and the local scouring around coastal structures where large-scale permeable sea-walls are maintained.

Implementation of Saemangeum Coastal Environmental Information System Using GIS (지리정보시스템을 이용한 새만금 해양환경정보시스템 구축)

  • Kim, Jin-Ah;Kim, Chang-Sik;Park, Jin-Ah
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.4
    • /
    • pp.128-136
    • /
    • 2011
  • To monitor and predict the change of coastal environment according to the construction of Saemangeum sea dyke and the development of land reclamation, we have done real-time and periodic ocean observation and numerical simulation since 2002. Saemangeum coastal environmental data can be largely classified to marine meteorology, ocean physics and circulation, water quality, marine geology and marine ecosystem and each part of data has been generated continuously and accumulated over about 10 years. The collected coastal environmental data are huge amounts of heterogeneous dataset and have some characteristics of multi-dimension, multivariate and spatio-temporal distribution. Thus the implementation of information system possible to data collection, processing, management and service is necessary. In this study, through the implementation of Saemangeum coastal environmental information system using geographic information system, it enables the integral data collection and management and the data querying and analysis of enormous and high-complexity data through the design of intuitive and effective web user interface and scientific data visualization using statistical graphs and thematic cartography. Furthermore, through the quantitative analysis of trend changed over long-term by the geo-spatial analysis with geo- processing, it's being used as a tool for provide a scientific basis for sustainable development and decision support in Saemangeum coast. Moreover, for the effective web-based information service, multi-level map cache, multi-layer architecture and geospatial database were implemented together.

Comparision of Tidal Current Patterns at Keum River Estuary before and after Construction of Keum River Bank and Coastal Structures (금강하굿둑과 각종 해안구조물 설치 전, 후의 금강하구역 해수유동 양상 비교)

  • Jang, Chang-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.601-610
    • /
    • 2021
  • The tidal current patterns at Keum River Estuary before and after the construction of coastal structures were compared according to the CASES. The depth-integrated and tidal difference treatment applied FLOW2DH numerical model was used for the tidal current predictions. The test conditions consisted of before construction of coastal structures (CASE1), after construction of coastal structures (CASE2), and the addition of watergate operation(CASE1Q and CASE2Q), and present (CASE3). CASE1 showed a stable tidal current pattern, such as a natural estuary. In CASE2, the tidal current velocities and directions of the Keum River Estuary were changed due to the installed coastal structures. In particular, the tidal current velocities of the Gaeya open channel sections (P5~P9) in CASE2 were calculated to be 10~30% larger than that of CASE1. In the case of the Gunsan Inner Harbor (P4), which is closest to the Geum River Estuary, the ebb flow rate was approximately 250~300% faster than that of other CASEs due to the discharge of the watergate operation for 2.7 hours during the ebb of CASE1Q and CASE2Q. This will affect sediment transport, and it is predicted to lead to seabed changes. CASE3 is considered to be entering the stabilization stage according to the simulation of the tidal current velocities and directions of the Keum River Estuary and the surrounding coastal area.

Characteristics of the flow in the Usan Trough in the East Sea (동해 우산해곡 해수 유동 특성)

  • Baek, Gyu Nam;Seo, Seongbong;Lee, Jae Hak;Hong, Chang Su;Kim, Yun-Bae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.2
    • /
    • pp.99-108
    • /
    • 2014
  • One year long time-series current data were obtained at two stations (K1 and K2) located in the Usan Trough in the area north of Ulleungdo in the East Sea from September 2006. The observed data reveal enhanced seafloor flows in both stations with variabilities of about 20 days which is possibly governed by the topographic Rossby wave. After February 2007, strong flow in the upper layer in St. K1 appears throughout the mooring period and this is due to the passage of the warm eddy comparing with satellite sea surface temperature data. During this period, no significant correlation between the current in the upper layer and those in two deep layers is shown indicating the eddy does not affect flows in the deep ocean. It is also observed that the flow direction rotates clockwise with depth in both stations except for the upper of the K1. This implies that the deep flow does not parallel to the isobaths exactly and it has a downwelling velocity component. The possibility of the flow from the Japan Basin to the Ulleung Basin across the Usan Trough is not evidenced from the data.

Environmental Characteristics According to the Depth in Deukryang Bay , Culturing Ground of Pen Shell ( Atrina Pectinata ) (수심에 따른 득량만 키조개 어장의 환경특성)

  • 최용규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.2
    • /
    • pp.127-141
    • /
    • 1995
  • The distribution of water mass in Deukryang Bay was investigated using observational data obtained on July 12 (spring tide) and 19 (neap tide) in 1994. In characteristics of water mass at the bay the area is divided into three ones by a vertical attenuation coefficient k and a stratification parameter, log sub (10) (H/U super (3)), was H is depth, and U mean velocity in the bay. The contour of k=0.6 has a similar distribution to the isobath of 10m depth in spring tide, and of 5m depth in neap tide, respectively. This indicates that the water mass in the area between the isobath of 5m and 10m depth is changed by tidal periods. The stratification parameter corresponding to k=0.6 was 2.1~2.2. In the shallow water of 5m depth the characteristics of water mass was distributed in temperature of 25.5~31.$0^{\circ}C$ and salinity of 32.8~33.8PSU(Practical Salinity Unit), the temperature was high and the salinity distributed widely. In the deep water of 10m depth it was the temperature of 22.0~29.5$^{\circ}C$ and the salinity of 33.0~33.6PSU, the temperature was low and the salinity distributed narrowly. In the middle depth water of 5m to 10m depth, the temperature of 22.0~30.$0^{\circ}C$ and the salinity of 32.8~33.5PSU, its values showed the middle between the values of the deep area and the values of the shallow area.

  • PDF