• Title/Summary/Keyword: 해저안정

Search Result 156, Processing Time 0.027 seconds

Geological Achievements of the 20th Century and Their Influence on Geological Thinking (20세기에 이룩된 지질과학 업적과 이것이 지질과학 사고방식에 끼친 영향)

  • Chang, Soon-Keun;Lee, Sang-Mook
    • Journal of the Korean earth science society
    • /
    • v.21 no.5
    • /
    • pp.635-646
    • /
    • 2000
  • Geological achievements of the 20th century revolutionized our views about geological understanding and concept. A good example is the concept of continental drift suggested early in the 20th century and later explained in terms of seafloor spreading and plate tectonics. Our understanding of the compositions of materials forming earth has also improved during the20th century. Radio and stable isotopes together with biostratigraphy and sequence stratigraphy allow us to interpret the evolution of sedimentary basins in terms of plate movement and sedimentation processes. The Deep Sea Drilling Project initiated in 1960s and continued as the Ocean Drilling Project in 1980s is one of the most successful international research observations, and new developments in computational techniques have provided a wholly new view about the interior of the earth. Most of the geological features and phenomena observed in deep sea and around continental margins are now explained in terms of global tectonic processes such as superplumes flowing up from the interior of our planet and interacting with such as Rodinia Pannotia and Nena back in the Precambrian time. The space explorations which began in the late 1950s opened up a new path to astrogeology, astrobiology, and astropaleontology. The impact theory rooted in the discovery of iridium and associated phenomena in 1980s revived Cuvier's catastrophism as a possible explanation for the extinctions of biotas found in the geological record of this planet. Due to the geological achievements made in the 20th century, we now have a better understanding of geologic times and processes that were too long to be grasped by human records.

  • PDF

Development of Improved Clustering Harmony Search and its Application to Various Optimization Problems (개선 클러스터링 화음탐색법 개발 및 다양한 최적화문제에 적용)

  • Choi, Jiho;Jung, Donghwi;Kim, Joong Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.630-637
    • /
    • 2018
  • Harmony search (HS) is a recently developed metaheuristic optimization algorithm. HS is inspired by the process of musical improvisation and repeatedly searches for the optimal solution using three operations: random selection, memory recall (or harmony memory consideration), and pitch adjustment. HS has been applied by many researchers in various fields. The increasing complexity of real-world optimization problems has created enormous challenges for the current technique, and improved techniques of optimization algorithms and HS are required. We propose an improved clustering harmony search (ICHS) that uses a clustering technique to group solutions in harmony memory based on their objective function values. The proposed ICHS performs modified harmony memory consideration in which decision variables of solutions in a high-ranked cluster have higher probability of being selected than those in a low-ranked cluster. The ICHS is demonstrated in various optimization problems, including mathematical benchmark functions and water distribution system pipe design problems. The results show that the proposed ICHS outperforms other improved versions of HS.

Verticality 3D Monitoring System for the Large Circular Steel Pipe (대형 원형강관 수직도 모니터링을 위한 3D 모니터링 시스템)

  • Koo, Sungmin;Park, Haeyoung;Oh, Myounghak;Baek, Seungjae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.870-877
    • /
    • 2020
  • A suction bucket foundation, especially useful at depths of more than 20m, is a method of construction. The method first places an empty upturned bucket at the target site. Then, the bucket is installed by sucking water or air into it to create negative pressure. For stability, it is crucial to secure the verticality of the bucket. However, inclination by the bucket may occur due to sea-bottom conditions. In general, a repeated intrusion-pulling method is used for securing verticality. However, it takes a long time to complete the job. In this paper, we propose a real-time suction bucket verticality monitoring system. Specifically, the system consists of a sensor unit that collects raw verticality data, a controller that processes the data and wirelessly transmits the information, and a display unit that shows verticality information of a circular steel pipe. The system is implemented using an inclination sensor and an embedded controller. Experimental results show that the proposed system can efficiently measure roll/pitch information with a 0.028% margin of error. Furthermore, we show that the system properly operates in a suction bucket-based model experiment.

SIR analysis for Enhancing Image Quality in Underwater Acoustic Lens System (수중음향렌즈 카메라에서 영상 품질 향상을 위한 SIR 분석)

  • Lee, Jieun;Im, Sungbin;Shim, Taebo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.181-190
    • /
    • 2014
  • The underwater acoustic lens system is one of the systems getting high-resolution images on the seafloor by the beam forming method using acoustic lens. The beam forming using acoustic lenses reduces complexity and driving power. When receiving an incoming beam with the acoustic lens array, beam pattern analysis and arrangement problem of the array sensor must be addressed. Introducing SIR (Signal to Interference Ratio), the relationship among sensor interval, beam pattern and image quality would be analyzed. Generally if the sensor interval getting wider, the less effect of the side lobes makes SIR high. If the amplitude of a side lobe is high, SIR is generally getting low. The type of the apodization function changes the width, shape and amplitude of both main lobe and side lobes. Thus an appropriate apodization function can improve SIR. In this paper, SIR is stable at the sensor interval of 13mm with 0-10dB, which is not high relatively. By applying the Chebyshev function, the SIR becomes 80dB over the sensor interval of 37 mm or higher. The Hann and triangular functions demonstrate better SIR when the sensor interval becomes narrower.

Design Load Analysis for Offshore Monopile with Various Estimation Methods of Ground Stiffness (지반강성 산정방법에 따른 해상 모노파일의 설계하중 해석)

  • Jang, Youngeun;Cho, Samdeok;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.47-58
    • /
    • 2014
  • This study explores methods for modeling the foundation-seabed interaction needed for the load analysis of an offshore wind energy system. It comprises the comparison study of foundation design load analyses for NREL 5 MW turbine according to various soil-foundation interaction models by conducting the load analysis with GH-Bladed, analysis software for offshore wind energy systems. Furthermore, the results of the aforementioned load analysis were applied to foundation analysis software called L-Pile to conduct a safety review of the foundation cross-section design. Differences in the cross-section of a monopile foundation were observed based on the results of the fixed model, winkler spring and coupled spring models, and the analysis of design load cases, including DLC 1.3, DLC 6.1a, and DLC 6.2a. Consequently, under all design load conditions, the diameter and thickness of the monopile foundation cross-section were found to be 7 m and 80 mm, respectively, using the fixed and coupled spring models; the results of the analysis conducted using the winkler spring model showed that the diameter and thickness of the monopile foundation cross-section were 5 m and 60 mm, respectively. The study found that the soil-foundation interaction modeling method had a significant impact on the load analysis results, which determined the cross-section of a foundation. Based on this study, it is anticipated that designing an offshore wind energy system foundation taking the above impact into account would reduce the possibility of a conservative or unconservative design of the foundation.

Characteristics for Progressive Collapse Behavior and Ultimate Strength of Very Large Marine Structure (초대형 해상구조물의 붕괴거동 및 최종강도 특성)

  • Park, Joo-Shin;Ko, Jae-Yong;Lee, Kyoung-Woo
    • Journal of Navigation and Port Research
    • /
    • v.33 no.5
    • /
    • pp.315-321
    • /
    • 2009
  • The Very Large Marine Structure has been widely used new method of ocean space instead of method for reclamation Therefore, VLFS is proposed to coincide on such request. It can be established regardless of nature of soil and height of water, and stream of flow exists under the floating structure, there is seldom effect in natural environment. Fuertherrnore, it can do easily to do assembly and taking to pieces due to expansion or removal. Based on the regulation by class, VLFS have to possess more than enough structural strength against severe wave loading induced by green sea condition Therefore, There are performed structural simulation as well as experimental test about expected loading scenario in order to examine the safety of structure. Up to now, various examinations based on the strength limit value of the main structural material have been done based on the elasticity response analysis. However, there is little finding about the collapse behavior and the safety when the load that exceeds the collapse of the material acts. In the present study, we investigated the collapse behavior based on the ultimate limit state calculated by FE-analysis.

Application of Displacement-Vector Objective Function for Frequency-domain Elastic Full Waveform Inversion (주파수 영역 탄성파 완전파형역산을 위한 변위벡터 목적함수의 적용)

  • Kwak, Sang-Min;Pyun, Suk-Joon;Min, Dong-Joo
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.3
    • /
    • pp.220-226
    • /
    • 2011
  • In the elastic wave equations, both horizontal and vertical displacements are defined. Since we can measure both the horizontal and vertical displacements in field acquisition, these displacements compose a displacement vector. In this study, we propose a frequency-domain elastic waveform inversion technique taking advantage of the magnitudes of displacement vectors to define objective function. When we apply this displacement-vector objective function to the frequency-domain waveform inversion, the inversion process naturally incorporates the back-propagation algorithm. Through the inversion examples with the Marmousi model and the SEG/EAGE salt model, we could note that the RMS error of the solution obtained by our algorithm decreased more stably than that of the conventional method. Particularly, the density of the Marmousi model and the low-velocity sub-salt zone of the SEG/EAGE salt model were successfully recovered. Since the gradient direction obtained from the proposed objective function is numerically unstable, we need additional study to stabilize the gradient direction. In order to perform the waveform inversion using the displacementvector objective function, it is necessary to acquire multi-component data. Hence, more rigorous study should be continued for the multi-component land acquisition or OBC (Ocean Bottom Cable) multi-component survey.

Oceanological Characteristics of the Ko-Ri Sea Area. I. Annual Cyclic Changes in Water Temperature, Salinity, pH and Transparency (고리해역의 해양학적 특성 I. 수온, 염분, pH 및 투명도의 년간변화에 관하여)

  • Choe, Sang;Chung Tai Wha
    • 한국해양학회지
    • /
    • v.1
    • /
    • pp.37-48
    • /
    • 1971
  • Observations of water temperature, salinity, pH and transparency of the Ko-ri sea area were made between May 1969 and April 1970. A seasonal thermocline was well defined in August, strongly isolating the warm serface water(19-22$^{\circ}C$) from the cold bottom water (14-17.5$^{\circ}C$) introducing from the open sea. In February the coldest isothermal water (11$^{\circ}C$) occurred. In the warm months(May- September), the salinity patterns show great variations with the coastal run-off During the cold months(December-April) the highest isohaline water (35 ) occurred. Annual ranges of surface and bottom pH values were 7.8-8.4(averaging 8.27) and 7.9-8.4(averaging 8.26), respectively. The transparency was greatest (6.0-7.0m) during winter and spring months and least (1.2-2.5m) during summer months.

  • PDF

Design Methodology on Steel-type Breakwater II. Pile Design Procedure (철재형 이안제 설계기법 연구 II. 하부기초 설계 단계)

  • Kwon, Oh-Kyun;Oh, Se-Boong;Kweon, Hyuck-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.219-228
    • /
    • 2011
  • In this paper, the design procedure of substructure of the steel-type breakwater was described and the actual foundation design was performed for the test bed. The site investigation was executed at the Osan-port area, in Uljin, Gyeongbuk, where the steeltype detached breakwater is constructed. The foundation mainly depends on the lateral load and uplift force due to the wave force. Since the superstructure is stuck out about 9.0m from the ocean bed, the foundation must resist on the lateral force and bending moment. After considering various factors, the foundation type of this structure was determined by the steel pipe pile(${\varphi}711{\times}t12mm$). On the stability of pile foundation, the safety factors of the pile on the compressive, lateral and uplift forces were grater than the minimum factor of safety. The displacements of pile under the working load were evaluated as the values below the permissible ones. Based on the subgrade reaction method, we evaluated the relationship of subgrade reaction and displacement for the lateral and the vertical directions in the layers. The structural analyses along with the foundation were perfomed and the effect of pile foundations were compared quantitatively.

Characteristics of Hypoxic Water Mass Occurrence in the Northwestern Gamak Bay, Korea, 2017 (2017년 한국 가막만 북서내만해역 빈산소수괴 발생의 특성)

  • Jeong, Hui-Ho;Choi, Sang-Duk;Cho, Hyeon-Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.708-720
    • /
    • 2021
  • As hypoxia adversely affects the marine environment in northwestern Gamak Bay every summer, the present study determined its comprehensive occurrence mechanisms using the Multiple Regression Analysis (MRA) and suggested management directions based on the primary MRA factors. The first hypoxia occurred by thermocline related to weather conditions, with organic matter deposited inside the bay on 26th June, 2017. Additionally, on 12th July, halocline was also developed by increased rainfall, and the hypoxia was most expanded horizontally and vertically. The primary factors were the stratification and deposited organic matter. In contrast, the hypoxia correlated to phytoplankton growth and deposited organic matter on 8th August was diminished with remarkably less precipitation. However, the stable halocline was caused by massive precipitation, and the reproduced phytoplankton re-generated the expanded hypoxia on 16th August despite a short sampling interval. Subsequently, the hypoxia influenced by the deposited organic matter spread shallowly along the seafloor on 13th September as the extinction period. These results suggest that stratification alleviation technologies, and the improvement and removal of the organic matter deposited on the surface sediment are necessary.