• Title/Summary/Keyword: 해저면 퇴적층

Search Result 92, Processing Time 0.028 seconds

Study on the Characteristics of Gas Hydrate Layers Distributed in the Southern Ulleung Basin, the East Sea (동해 울릉분지 남부해역에 분포하는 가스 하이드레이트층의 특성 연구)

  • Huh Sik;Yoo Hai-Soo;Kim Han-Joon;Han Sang-Joon;Lee Yong-Kuk
    • The Korean Journal of Petroleum Geology
    • /
    • v.10 no.1_2 s.11
    • /
    • pp.18-22
    • /
    • 2004
  • To identify and interpret the distribution and the characteristics of the gas hydrate layers in the Ulleung Basin, we have surveyed and gathered the multi-channel seismic data, Chirp sub-bottom profiler, SeaBeam and 12 m piston core samples since 1996. In previous works, high-resolution seismic profiles showed acoustic anomalies such as acoustic void, acoustic turbidity and pock mark which indicate the presence of gas-charged sediments. The patterns of horizontal degassing cracks originated from free methane expansion is the strong indicator of shallow gas-charged sediments in the core samples. The observation of submarine slides and slumps from destabilizing the sediments in the southern part of the Ulleung Basin may also point out that the gas had been released from gas hydrate dissociation during lowstand of sea level. The multi-channel seismic data show BSR, blanking and phase reversal. The gas hydrate layers above which large-scale shallow gases are distributed exist at the depth of about 200 m from the sea-floor with water depth of 2,100 m. From the interpretation of seismic sections in the southern Ulleung Basin, gas hydrate layers occur in the Pleistocene-Holocene sediments. These gas-charged sediments, acoustic anomalies and BSR may be all related to the existence of gas hydrate layers in the study area.

  • PDF

Frequency Dependence of High-Frequency Bottom Reflection Loss Model (주파수 종속성을 갖는 고주파 해저면 반사손실 모델)

  • 박순식;윤관섭;나정열;석동우;주진용;조진석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.362-369
    • /
    • 2004
  • The High-frequency (30 ∼ 120 ㎑) bottom reflection loss at rough water-sediment interface is affected by the gram size distribution of the sediments. The roughness of the bottom surface is represented by "acoustical roughness. g/sub R/" The grain size of sandy sediments is g/sub R/∼O(1) and the dependence as a function of frequency. We suggest the modified bottom reflection loss model (HYBRL model , HanYang university Bottom Reflection Loss model) that include in the deviation of the reflection loss as a function of the grain size distribution and frequency dependence. And bottom reflection loss model of frequency dependence and deviation of bottom properties is verified by water tank and field experiments.

Measurements of Mid-frequency Bottom Loss in Shallow Water of the Yellow Sea (서해 천해환경에서의 중주파수 해저면 반사손실 측정)

  • Yoon, Young Geul;Lee, Changil;Choi, Jee Woong;Cho, Sungho;Oh, Suntaek;Jung, Seom-Kyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.423-431
    • /
    • 2015
  • KIOST-HYU joint acoustics experiment was performed on the western shallow water off the Taean peninsula in the Yellow Sea in May 2013. In this paper, mid-frequency (6~16 kHz) bottom loss data measured in a grazing angle range of $17{\sim}60^{\circ}$ are presented and compared to the predictions obtained using a Rayleigh reflection model. The sediment structure of the experimental site was characterized by multi-layered sediment and the components of the surficial sediment consisted of various types of particles with a mean grain size of $5.9{\phi}$. The model predictions obtained using the mean grain size were not in agreement with the measured bottom loss, and those obtained using the grain size of $4{\phi}$, which was estimated by an inversion process, showed a best fit to the measurements. It would be because the standard deviation of the gain-size distribution of surficial sediment is $4.3{\phi}$, which is much larger than those of other areas around the experimental site. Finally, the model predictions obtained using the geoacoustic parameters estimated from the inversion process for the surficial sediment layer and those corresponding to the mean grain size of $1.3{\phi}$ for lower layer are reasonably agreement with the measured bottom loss data.

Sea Level Fluctuation in the Yellow Sea Basin (황해 분지의 해수면 변동)

  • PARK, YONG AHN;KHIM, BOO KEUN;ZHAO, SONGLING
    • 한국해양학회지
    • /
    • v.29 no.1
    • /
    • pp.42-49
    • /
    • 1994
  • A series of radiocarbon dating from intertidal, subtidal, and inner continental shelf deposits investigated along the west coast of Korea as well as from its offshore sea floor (namely, the eastern Yellow Sea Basin) how (1) the Holocene sea level rise, i.e., the ecstatic sea-level history during the oxygen isotope stage 1, and (2) pre-Holocene sea-level fluctuations during the oxygen isotope stages 2 and 3. Marine geophysical investigations in the Yellow Sea reported a possible development of desert and loses deposits due to dieselization under the cold and dry climate during the Last Glacial Maximum. The Kanweoldo deposit overlain unconformably by the Holocene intertidal deposits, which is mainly exposed along the tidal channels and intertidal flats in the Cheonsu Bay, the west coast of Korea, shows the characteristic cryogenic structure (cryoturbation). Such cryoturbation structure of the Kanweoldo deposit appears to indicate the cold and dry climate under the ecstatic sea-level paleoshoreline standing before and after of the pre-Holocene interstitial period (about 30000 y BP is suggested and its shoreline curve is constructed.

  • PDF

Seabed Classification Using the K-L (Karhunen-Lo$\grave{e}$ve) Transform of Chirp Acoustic Profiling Data: An Effective Approach to Geoacoustic Modeling (광역주파수 음향반사자료의 K-L 변환을 이용한 해저면 분류: 지질음향 모델링을 위한 유용한 방법)

  • Chang, Jae-Kyeong;Kim, Han-Joon;Jou, Hyeong-Tae;Suk, Bong-Chool;Park, Gun-Tae;Yoo, Hai-Soo;Yang, Sung-Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.3
    • /
    • pp.158-164
    • /
    • 1998
  • We introduce a statistical scheme to classify seabed from acoustic profiling data acquired using Chirp sonar system. The classification is based on grouping of signal traces by similarity index, which is computed using the K-L (Karhunen-Lo$\grave{e}$ve) transform of the Chirp profiling data. The similarity index represents the degree of coherence of bottom-reflected signals in consecutive traces, hence indicating the acoustic roughness of the seabed. The results of this study show that similarity index is a function of homogeneity, grain size of sediments and bottom hardness. The similarity index ranges from 0 to 1 for various types of seabed material. It increases in accordance with the homogeneity and softness of bottom sediments, whereas it is inversely proportional to the grain size of sediments. As a real data example, we classified the seabed off Cheju Island, Korea based on the similarity index and compared the result with side-scan sonar data and sediment samples. The comparison shows that the classification of seabed by the similarity index is in good agreement with the real sedimentary facies and can delineate acoustic response of the seabed in more detail. Therefore, this study presents an effective method for geoacoustic modeling to classify the seafloor directly from acoustic data.

  • PDF

Evaluation Wave Induced Liquefaction in Seabed (파랑하중에 의한 해저지반의 액상화 평가)

  • Jang, Byeong-Uk;Do, Deok-Hyeon;Song, Chang-Seop
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.17-26
    • /
    • 1993
  • The mechanism of wave -induced stresses and liquefactions in a seabed is studied theoretically and experimentally, A constitutive equation which is governing wave -induced effective stresses and porepressures in an unsaturated seabed under the hydraulically anisotropic conditions is developed. It is learned that the effective stresses and excessive porewater pressures are governed by the conditions of waves and sedimentary layers, Especially the magnitude of effective stresses and the depth of disturbed zone induced by waves is controlled by the degree of saturation of the unsaturated seabeds.

  • PDF

A Study of Habitat Environment Mapping Using Detailed Bathymetry and Seafloor Data in the Southern Shore of the East Sea(Ilsan Beach, Ulsan) (정밀 해저지형 및 해저면 자료를 활용한 동해 남부 연안(울산 일산해변) 생태계 서식지 환경 맵핑 연구)

  • Choi, SoonYoung;Kim, ChangHwan;Kim, WonHyuck;Rho, HyunSoo;Park, ChanHong
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.717-731
    • /
    • 2021
  • We analyzed the characteristics of the habitat environment for the Seonam study area in Ulsan, the southern shore of the East Sea using bathymetry and seafloor environment data. The depth of the study area ranges from about 0 m to 23 m. In the west of the study area, the water depth is shallow with a gentle slope, and the water depth becomes deeper with a steep slope in the east. Due to the right-lateral strike-slip faults located in the continental margin of the East Sea, the fracture surfaces of the seabed rocks are mainly in the N-S direction, which is similar to the direction of the strike faults. Three seafloor types (conglomeratic-grained sandy, coasre-graiend sandy, fine-grained sandy) and rocky bottom area have been classified according to the analyses of the bathymerty, seafloor image, and surface sediment data. The rocky bottom areas are mainly distributed around Seaoam and in the northern and southern coastal area. But the intermediate zone between Seonam and coastal area has no rocky bottom. This intermediate area is expected to have active sedimentation as seawater way. The sandy sediments are widely distributed throughout the study area. Underwater images and UAV images show that Cnidarians, Brachiopods, Mollusks are mostly dominant in the shallow habitat and various Nacellidae, Mytilidae live on the intertidal zone around Seonam. Annelida and Arthropod are dominant in the sandy sediments. The distribution of marine organism in the study area might be greatly influenced by the seafloor type, the composition and particle size distribution of the seafloor sediments. The analysis of habitat environment mapping with bathymetry, seafloor data and underwater images is supposed to contribute to the study of the structure and function of marine ecosystem.

Effects of Depth-varying Compressional Wave Attenuation on Sound Propagation on a Sandy Bottom in Shallow Water (천해 사질 퇴적층에서 종파감쇠계수의 깊이별 변화가 음파손실에 미치는 영향)

  • Na, Young-Nam;Shim, Tae-Bo;Jurng, Moon-Sub;Choi, Jin-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2E
    • /
    • pp.76-82
    • /
    • 1994
  • The characteristics of bottom sediment may be able to vary within a few meters of depth in shallow water. Since bottom attenuation coefficient as well as sound velocity in the bottom layer is determined by the composition and characteristics of sediment itself, it is reasonable to assume that the bottom attenuation coefficient is accordingly variable with depth. In this study, we use a parabolic equation scheme to examine the effects of depth-varying compressional wave attenuation on acoustic wave propagation in the low frequency ranging from 100 to 805 Hz. The sea floor under consideration is sandy bottom where the water and the sediment depths are 40 meters and 10 meters, respectively. Depending on the assumption that attenuation coefficient is constant or depth-varying, the propagation loss difference is as large as 10dB within 15 km. The predicted propagation loss is very much comparable to the measured one when we employ a depth-varying attenuation coefficient.

  • PDF

High-Current Time-Lapse Electrical Imaging in Marine Sediments Area (해성퇴적층 하부지반 대전류 time-lapse 전기탐사)

  • Jung, Hyun-Key;Geo, Dong-Kweon Lee
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.109-112
    • /
    • 2006
  • Successful field test results for high-current time-lapse electrical imaging in marine sediments area are discussed. Because field trial by commercially available equipments were failed, self-developed system which supports transmitting current up to 5 ampere was used. Some weak zones due to local fractures were detected, but the weak zone effect in this area by time-lapse measurements from sea level change was minor.

  • PDF

Towards remote sensing of sediment thickness and depth to bedrock in shallow seawater using airborne TEM (항공 TEM 을 이용한 천해지역에서의 퇴적층 두께 및 기반암 심도 원격탐사에 관하여)

  • Vrbancich, Julian;Fullagar, Peter K.
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.77-88
    • /
    • 2007
  • Following a successful bathymetric mapping demonstration in a previous study, the potential of airborne EM for seafloor characterisation has been investigated. The sediment thickness inferred from 1D inversion of helicopter-borne time-domain electromagnetic (TEM) data has been compared with estimates based on marine seismic studies. Generally, the two estimates of sediment thickness, and hence depth to resistive bedrock, were in reasonable agreement when the seawater was ${\sim}20\;m$ deep and the sediment was less than ${\sim}40\;m$ thick. Inversion of noisy synthetic data showed that recovered models closely resemble the true models, even when the starting model is dissimilar to the true model, in keeping with the uniqueness theorem for EM soundings. The standard deviations associated with shallow seawater depths inferred from noisy synthetic data are about ${\pm}5\;%$ of depth, comparable with the errors of approximately ${\pm}1\;m$ arising during inversion of real data. The corresponding uncertainty in depth-to-bedrock estimates, based on synthetic data inversion, is of order of ${\pm}10\;%$. The mean inverted depths of both seawater and sediment inferred from noisy synthetic data are accurate to ${\sim}1\;m$, illustrating the improvement in accuracy resulting from stacking. It is concluded that a carefully calibrated airborne TEM system has potential for surveying sediment thickness and bedrock topography, and for characterising seafloor resistivity in shallow coastal waters.