• Title/Summary/Keyword: 해역

Search Result 4,715, Processing Time 0.043 seconds

The Present State of Marine Oil Spills and the Enhancement Plans of National Oil Spill Response Capability in Vietnam - Through the Comparison of Statistics and OSR System between Vietnam and Republic of Korea - (베트남의 해양기름유출 현황과 국가대응역량 증강 방안 - 통계자료와 유출유 방제시스템에 대한 베트남과 한국 간의 비교를 통하여 -)

  • Phan, Van Hung;Kim, Kwang-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.690-698
    • /
    • 2017
  • Vietnam is a marine nation with more than 3,444 km of shorelines, thousands of islands, and 2,360 rivers and canals of over 42,000 km long. As the frequency and the volume of oil transportation by ships increase, the possibility of oil spill incidents becomes higher than ever. Fuel oil and cargo oil spills at sea have widespread impact and long-term consequences on marine ecosystems, coastal resources and human health as well as socio-economy. This study is to show not only the present state of marine oil spills in Vietnam such as the number and the volume of oil spills for two decades, and an overall about Vietnamese national response system like national framework for Oil Spill Response (OSR), etc. but also to present the recommendations for enhancing national capability in response to oil spill incidents in Vietnam, especially, with a comparison of national OSR systems between Vietnam and South Korea. As the result, the number and the volume of marine oil spills in Vietnam showed an upward trend as opposed to a downward trend in South Korea. This means that Vietnam has the possibility of oil spills in coastal waters. Therefore, three main recommendations for the enhancement of national OSR capability in Vietnam are proposed as follows: (1) the development of alternative plan for reenforcing national OSR system involving legal system for preparedness and response to oil spill pollution such as the acceptance and implementation of OPRC Convention as well as the establishment of national fund compensating for the damage and loss caused by oil pollution; (2) the enhancement of a consistent reporting, alerting and monitoring system; and (3) the development of training and exercise programs with standard contents of educational courses.

Neotectonic Crustal Deformation and Current Stress Field in the Korean Peninsula and Their Tectonic Implications: A Review (한반도 신기 지각변형과 현생 응력장 그리고 지구조적 의미: 논평)

  • Kim, Min-Cheol;Jung, Soohwan;Yoon, Sangwon;Jeong, Rae-Yoon;Song, Cheol Woo;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.169-193
    • /
    • 2016
  • In order to characterize the Neotectonic crustal deformation and current stress field in and around the Korean Peninsula and to interpret their tectonic implications, this paper synthetically analyzes the previous Quaternary fault and focal mechanism solution data and recent geotechnical in-situ stress data and examines the characteristics of crustal deformations and tectonic settings in and around East Asia after the Miocene. Most of the Quaternary fault outcrops in SE Korea occur along major inherited fault zones and show a NS-striking top-to-the-west thrust geometry, indicating that the faults were produced by local reactivation of appropriately oriented preexisting weaknesses under EW-trending pure compressional stress field. The focal mechanism solutions in and around the Korean Peninsula disclose that strike-slip faulting containing some reverse-slip component and reverse-slip faulting are significantly dominant on land and in sea area, respectively. The P-axes are horizontally clustered in ENE-WSW direction, whereas the T-axes are girdle-distributed in NNW direction. The geotechnical in-situ stress data in South Korea also indicate the ENE-trending maximum horizontal stress. The current crustal deformation in the Korean Peninsula is thus characterized by crustal contraction under regional ENE-WSW or E-W compression stress field. Based on the regional stress trajectories in and around East Asia, the current stress regime is interpreted to have resulted from the cooperation of westward shallow subduction of the Pacific Plate and collision of Indian and Eurasian continents, whereas the Philippine Sea plate have not a decisive effect on the stress-regime in the Korean Peninsula due to its high-angle subduction that resulted in dominant crust extension of the back-arc region. It is also interpreted that the Neotectonic crustal deformation and present-day tectonic setting of East Asia commenced with the change of the Pacific Plate motion during 5~3.2 Ma.

Comparison of Methods for Estimating Extreme Significant Wave Height Using Satellite Altimeter and Ieodo Ocean Research Station Data (인공위성 고도계와 이어도 해양과학기지 관측 자료를 활용한 유의파고 극값 추정 기법 비교)

  • Woo, Hye-Jin;Park, Kyung-Ae;Byun, Do-Seung;Jeong, Kwang-Yeong;Lee, Eun-Il
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.524-535
    • /
    • 2021
  • Rapid climate change and oceanic warming have increased the variability of oceanic wave heights over the past several decades. In addition, the extreme wave heights, such as the upper 1% (or 5%) wave heights, have increased more than the heights of the normal waves. This is true for waves both in global oceans as well as in local seas. Satellite altimeters have consistently observed significant wave heights (SWHs) since 1991, and sufficient SWH data have been accumulated to investigate 100-year return period SWH values based on statistical approaches. Satellite altimeter data were used to estimate the extreme SWHs at the Ieodo Ocean Research Station (IORS) for the period from 2005 to 2016. Two representative extreme value analysis (EVA) methods, the Initial Distribution Method (IDM) and Peak over Threshold (PoT) analysis, were applied for SWH measurements from satellite altimeter data and compared with the in situ measurements observed at the IORS. The 100-year return period SWH values estimated by IDM and PoT analysis using IORS measurements were 8.17 and 14.11 m, respectively, and those using satellite altimeter data were 9.21 and 16.49 m, respectively. When compared with the maximum value, the IDM method tended to underestimate the extreme SWH. This result suggests that the extreme SWHs could be reasonably estimated by the PoT method better than by the IDM method. The superiority of the PoT method was supported by the results of the in situ measurements at the IORS, which is affected by typhoons with extreme SWH events. It was also confirmed that the stability of the extreme SWH estimated using the PoT method may decline with a decrease in the quantity of the altimeter data used. Furthermore, this study discusses potential limitations in estimating extreme SWHs using satellite altimeter data, and emphasizes the importance of SWH measurements from the IORS as reference data in the East China Sea to verify satellite altimeter data.

Introduction on the Products and the Quality Management Plans for GOCI-II (천리안 해양위성 2호 산출물 및 품질관리 계획)

  • Lee, Sun-Ju;Lee, Kyeong-Sang;Han, Tae Hyun;Moon, Jeong-Eon;Bae, Sujung;Choi, Jong-kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1245-1257
    • /
    • 2021
  • GOCI-II, succeeding the mission of GOCI, was launched in February 2020 and has been in regular operation since October 2020. Korea Institute of Ocean Science and Technology (KIOST) processes and produces in real time Level-1B and 26 Level-2 outputs, which then are provided by Korea Hydrographic and Oceanographic Agency (KHOA). We introduced current status of regular GOCI-II operation and showed future improvement. Basic GOCI-II products including chlorophyll-a, total suspended materials, and colored dissolved organic matter concentration, are induced by OC4 and YOC algorithms, which were described in detail. For the full disk (FD), imaging schedule was established considering solar zenith angle and sun glint during the in-orbital test, but improved by further considering satellite zenith angle. The number of slots satisfying the condition 'Best Ocean' significantly increased from 15 to 78. GOCI-II calibration requirements were presented based on that by European Space Agency (ESA) and candidate fixed locations for calibrating local observation area were. The quality management of FD uses research ships and overseas bases of KIOST, but it is necessary to establish an international calibration/validation network. These results are expected to enhance the understanding of users for output processing and help establish detailed plans for future quality management tasks.

Introduction of GOCI-II Atmospheric Correction Algorithm and Its Initial Validations (GOCI-II 대기보정 알고리즘의 소개 및 초기단계 검증 결과)

  • Ahn, Jae-Hyun;Kim, Kwang-Seok;Lee, Eun-Kyung;Bae, Su-Jung;Lee, Kyeong-Sang;Moon, Jeong-Eon;Han, Tai-Hyun;Park, Young-Je
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1259-1268
    • /
    • 2021
  • The 2nd Geostationary Ocean Color Imager (GOCI-II) is the successor to the Geostationary Ocean Color Imager (GOCI), which employs one near-ultraviolet wavelength (380 nm) and eight visible wavelengths(412, 443, 490, 510, 555, 620, 660, 680 nm) and three near-infrared wavelengths(709, 745, 865 nm) to observe the marine environment in Northeast Asia, including the Korean Peninsula. However, the multispectral radiance image observed at satellite altitude includes both the water-leaving radiance and the atmospheric path radiance. Therefore, the atmospheric correction process to estimate the water-leaving radiance without the path radiance is essential for analyzing the ocean environment. This manuscript describes the GOCI-II standard atmospheric correction algorithm and its initial phase validation. The GOCI-II atmospheric correction method is theoretically based on the previous GOCI atmospheric correction, then partially improved for turbid water with the GOCI-II's two additional bands, i.e., 620 and 709 nm. The match-up showed an acceptable result, with the mean absolute percentage errors are fall within 5% in blue bands. It is supposed that part of the deviation over case-II waters arose from a lack of near-infrared vicarious calibration. We expect the GOCI-II atmospheric correction algorithm to be improved and updated regularly to the GOCI-II data processing system through continuous calibration and validation activities.

Calculation Method of Oil Slick Area on Sea Surface Using High-resolution Satellite Imagery: M/V Symphony Oil Spill Accident (고해상도 광학위성을 이용한 해상 유출유 면적 산출: 심포니호 기름유출 사고 사례)

  • Kim, Tae-Ho;Shin, Hye-Kyeong;Jang, So Yeong;Ryu, Joung-Mi;Kim, Pyeongjoong;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1773-1784
    • /
    • 2021
  • In order to minimize damage to oil spill accidents in the ocean, it is essential to collect a spilled area as soon as possible. Thus satellite-based remote sensing is a powerful source to detect oil spills in the ocean. With the recent rapid increase in the number of available satellites, it has become possible to generate a status report of marine oil spills soon after the accident. In this study, the oil spill area was calculated using various satellite images for the Symphony oil spill accident that occurred off the coast of Qingdao Port, China, on April 27, 2021. In particular, improving the accuracy of oil spill area determination was applied using high-resolution commercial satellite images with a spatial resolution of 2m. Sentinel-1, Sentinel-2, LANDSAT-8, GEO-KOMPSAT-2B (GOCI-II) and Skysat satellite images were collected from April 27 to May 13, but five images were available considering the weather conditions. The spilled oil had spread northeastward, bound for coastal region of China. This trend was confirmed in the Skysat image and also similar to the movement prediction of oil particles from the accident location. From this result, the look-alike patch observed in the north area from the Sentinel-1A (2021.05.01) image was discriminated as a false alarm. Through the survey period, the spilled oil area tends to increase linearly after the accident. This study showed that high-resolution optical satellites can be used to calculate more accurately the distribution area of spilled oil and contribute to establishing efficient response strategies for oil spill accidents.

Phytohydrographic Plankton Studies during the First Half of the 20th Century in Korean Neritic Seas (20세기 전반 한국 근해역 플랑크톤의 식물수문학적 연구)

  • PARK, JONG WOO;KIM, HYUNG SEOP;YIH, WONHO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.3
    • /
    • pp.483-494
    • /
    • 2019
  • From the cosmopolitan superiority of the as the first world map completed in 1402 with surprisingly detailed images and contents on the Africa Continent it is reasonable to think that the Koreans in early fifteen century were already with highly up-to-date perspectives on the universe and world history and cultures. However, some 490 year later the first phytohydrographic plankton investigation in the neritic seas of Korea was performed by a Japanese company with sampling points covering from Tokyo Bay through Jeju neritic waters to Shanghai estuary, which was in turn preceded by the first oceanographic investigation other than the simple mapping Koreans seas by using two French sailboats. The first phytohydrographic plankton investigation in Korean seas were behind the world first oceanic plankton exploration, the German Plankton Expedition, by 25 years. Starting from the oceanographic investigation including phytohydrographic samplings in the whole Yellow Sea in 1915 the full-scale phytohydrographic plankton studies were tried in Korean seas which is well represented by the 1921 oceanographic investigation on the whole East Sea with 80 sampling stations. In 1932 two separate oceanographic investigations followed, one in the East Sea where 78 stations from Busan to southern Sakhalin Island were simultaneously visited by 50 research vessels for the physical, chemical, and biological oceanographic studies, and the other one in southern coast and western East Sea of Korea where ocean current observation as well as plankton sampling were made in 120 stations to understand the relationship between the ocean current and plankton distribution in the region. In 1933-1934 more intensified investigations on phytohydrography were carried out particularly in the East Sea as an integral part of the basic marine ecosystem studies for the Myeong-Tae (Alaska Pollock) resources estimation. Scientists' attitude for the marine investigation and research activities seemed to be almost unchanging even to the year 1943, which could be reflected by the fact that publication of the results from the investigations performed in 1945 were finally done in 1967 at Tokyo. Some 70 years later from the mid-twenty century we might be standing on the turning-point of "need to be prepared" for the new era of changing paradigm by reviewing, archiving, and analyzing the prior information big data from the previous ocean observation and biohydrographic investigations. At the same time each professional societies for the above mentioned sciences might trigger a continuous project to reorganize and update the records on related bibliography and its history every 30 years.

An Experimental and Numerical Study on the Survivability of a Long Pipe-Type Buoy Structure in Waves (긴 파이프로 이뤄진 세장형 부이 구조물의 파랑 중 생존성에 관한 모형시험 및 수치해석 연구)

  • Kwon, Yong-Ju;Nam, Bo-Woo;Kim, Nam-Woo;Park, In-Bo;Kim, Sea-Moon
    • Journal of Navigation and Port Research
    • /
    • v.42 no.6
    • /
    • pp.427-436
    • /
    • 2018
  • In this study, experimental and numerical analysis were performed on the survivability of a long pipe-type buoy structure in waves. The buoy structure is an articulated tower consisting of an upper structure, buoyancy module, and gravity anchor with long pipes forming the base frame. A series of experiment were performed in the ocean engineering basin of KRISO with the scaled model of 1/ 22 to evaluate the survivability of the buoy structure at West Sea in South Korea. Survival condition was considered as the wave of 50 year return period. Additional experiments were performed to investigate the effects of current and wave period. The factors considered for the evaluation of the buoy's survival were the pitch angle of the structure, anchor reaction force, and the number of submergence of the upper structure. Numerical simulations were carried out with the OrcaFlex, the commercial program for the mooring analysis, with the aim of performing mutual validation with the experimental results. Based on the evaluation, the behavior characteristics of the buoy structure were first examined according to the tidal conditions. The changes were investigated for the pitch angle and anchor reaction force at HAT and LAT conditions, and the results directly compared with those obtained from numerical simulation. Secondly, the response characteristics of the buoy structure were studied depending on the wave period and the presence of current velocity. Third, the number of submergence through video analysis was compared with the simulation results in relation to the submergence of the upper structure. Finally, the simulation results for structural responses which were not directly measured in the experiment were presented, and the structural safety discussed in the survival waves. Through a series of survivability evaluation studies, the behavior characteristics of the buoy structure were examined in survival waves. The vulnerability and utility of the buoy structure were investigated through the sensitivity studies of waves, current, and tides.

Influence of Large-Scale Environments on Tropical Cyclone Activity over the Western North Pacific: A Case Study for 2009 (대규모 순환장이 북서태평양 태풍활동에 끼치는 영향: 2009년의 예)

  • Choi, Woosuk;Ho, Chang-Hoi;Kim, Hyeong-Seog
    • Journal of Climate Change Research
    • /
    • v.1 no.2
    • /
    • pp.133-145
    • /
    • 2010
  • This study examined the characteristics of tropical cyclone(TC) activity over the western North Pacific(WNP) in 2009. Twenty-two TCs formed in 2009, which is slightly below normal(1979~2009 average: 25.8) and most of these occurred during the months of July to October. Most TCs in 2009 was formed over the northern Philippines and the eastern part of the WNP and they moved towards the South China Sea and the east of Japan, resulting in less TC affecting the East China Sea and Korea. The TC activity in 2009 is modulated by the large-scale circulations induced by the El $Ni{\tilde{n}}o$ and vigorous convection activity over the WNP. As the general characteristics of El $Ni{\tilde{n}}o$ year, the difference in sea surface temperature between the central Pacific and the eastern Pacific causes an anomalous westerly winds, expanding the WNP monsoon trough farther eastward. Accordingly, TC formation has relatively increased in the east part of the WNP. Active convection activities over the subtropical western Pacific excite a Rossby wave propagating from the South China Sea to mid-latitudes, resulting in an anomalous easterly steering flow in the South China, anomalous northwesterly over the East China Sea and Korea, and anomalous southwesterly over the east of Japan. Summing up, the TCs cannot enter the East China Sea and Korean region and instead they move towards the South China Sea or south-east of Japan. There were no effects of TCs in Korea in 2009. It is anticipated that this study which analyzed unusual TC activity and large-scale circulations in 2009 would help the predictability of TC effects to increase according to climate change in the East Asia.

Data issue and Improvement Direction for Marine Spatial Planning (해양공간계획 지원을 위한 정보 현안 및 개선 방향 연구)

  • CHANG, Min-Chol;PARK, Byung-Moon;CHOI, Yun-Soo;CHOI, Hee-Jung;KIM, Tae-Hoon;LEE, Bang-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.175-190
    • /
    • 2018
  • Recently, policy of the marine advanced countries were switched from the preemption using ocean to post-project development. In this study, we suggest improvement and the pending issues when are deducted to the database of the marine spatial information is constructed over the GIS system for the Korean Marine Spatial Planning (KMSP). More than 250 spatial information in the seas of Korea were processed in order of data collection, GIS transformation, data analysis and processing, data grouping, and space mapping. It's process had some problem occurred to error of coordinate system, digitizing process for lack of the spatial information, performed by overlapping for the original marine spatial information, and so on. Moreover, solution is needed to data processing methods excluding personal information which is necessary when produce the spatial data for analysis of the used marine status and minimized method for different between the spatial information based GIS system and the based real information. Therefore, collection and securing system of lacking marine spatial information is enhanced for marine spatial planning. it is necessary to link and expand marine fisheries survey system. It is needed to the marine spatial planning. The marine spatial planning is required to the evaluation index of marine spatial and detailed marine spatial map. In addition, Marine spatial planning is needed to standard guideline and system of quality management. This standard guideline generate to phase for production, processing, analysis, and utilization. Also, the quality management system improve for the information quality of marine spatial information. Finally, we suggest necessity need for the depths study which is considered as opening extension of the marine spatial information and deduction on application model.