Browse > Article
http://dx.doi.org/10.7780/kjrs.2021.37.5.2.4

Introduction of GOCI-II Atmospheric Correction Algorithm and Its Initial Validations  

Ahn, Jae-Hyun (Korea Institute of Ocean Science and Technology)
Kim, Kwang-Seok (Korea Institute of Ocean Science and Technology)
Lee, Eun-Kyung (Korea Institute of Ocean Science and Technology)
Bae, Su-Jung (Korea Institute of Ocean Science and Technology)
Lee, Kyeong-Sang (Korea Institute of Ocean Science and Technology)
Moon, Jeong-Eon (Korea Institute of Ocean Science and Technology)
Han, Tai-Hyun (Korea Institute of Ocean Science and Technology)
Park, Young-Je (Korea Institute of Ocean Science and Technology)
Publication Information
Korean Journal of Remote Sensing / v.37, no.5_2, 2021 , pp. 1259-1268 More about this Journal
Abstract
The 2nd Geostationary Ocean Color Imager (GOCI-II) is the successor to the Geostationary Ocean Color Imager (GOCI), which employs one near-ultraviolet wavelength (380 nm) and eight visible wavelengths(412, 443, 490, 510, 555, 620, 660, 680 nm) and three near-infrared wavelengths(709, 745, 865 nm) to observe the marine environment in Northeast Asia, including the Korean Peninsula. However, the multispectral radiance image observed at satellite altitude includes both the water-leaving radiance and the atmospheric path radiance. Therefore, the atmospheric correction process to estimate the water-leaving radiance without the path radiance is essential for analyzing the ocean environment. This manuscript describes the GOCI-II standard atmospheric correction algorithm and its initial phase validation. The GOCI-II atmospheric correction method is theoretically based on the previous GOCI atmospheric correction, then partially improved for turbid water with the GOCI-II's two additional bands, i.e., 620 and 709 nm. The match-up showed an acceptable result, with the mean absolute percentage errors are fall within 5% in blue bands. It is supposed that part of the deviation over case-II waters arose from a lack of near-infrared vicarious calibration. We expect the GOCI-II atmospheric correction algorithm to be improved and updated regularly to the GOCI-II data processing system through continuous calibration and validation activities.
Keywords
GOCI-II; atmospheric correction; vicarious calibration; Calibration/Validation; ocean color;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Morel, A., B. Gentili, and D. Antoine, 2005. Assessing the Atmospheric and Marine Signal from a Geostationary Orbit (part II), COMS Ocean Data Processing System Development Project (3).
2 Pahlevan, N., J.C. Roger, and Z. Ahmad, 2017. Revisiting short-wave-infrared (SWIR) bands for atmospheric correction in coastal waters, Optics Express, 25(6): 6015-6035.   DOI
3 Siegel, D.A., M. Wang, S. Maritorena, and W. Robinson, 2000. Atmospheric correction of satellite ocean color imagery: the black pixel assumption, Applied Optics, 39(21): 3582-3591.   DOI
4 Ahn, J.H. and Y.J. Park, 2020. Estimating Water Reflectance at Near-Infrared Wavelengths for Turbid Water Atmospheric Correction: A Preliminary Study for GOCI-II, Remote Sensing, 12(22): 3791.   DOI
5 Wang, M., 2006. Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance, Applied Optics, 45(17): 4122-4128.   DOI
6 Ahn, J.H., Y.J. Park, W. Kim, and B. Lee, 2015. Vicarious calibration of the geostationary ocean color imager, Optics Express, 23(18): 23236-23258.   DOI
7 Lee, B., J.H. Ahn, Y.J. Park, and S.W. Kim, 2013. Turbid water atmospheric correction for GOCI: Modification of MUMM algorithm, Korean Journal of Remote Sensing, 29(2), 173-182 (in Korean with English abstract).   DOI
8 Lerebourg, C., C. Mazeran, J.P. Huot, and D. Antoine, 2011. Vicarious adjustment of the MERIS ocean colour radiometry, MERIS ATBD 2.24, ACRI-ST, Prestons, NSW, AU.
9 Franz, B.A., S.W. Bailey, P.J. Werdell, and C.R. McClain, 2007. Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry, Applied Optics, 46(22): 5068-5082.   DOI
10 Ahn, J.H., Y.J. Park, J.H. Ryu, B. Lee, and I.S. Oh, 2012. Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI), Ocean Science Journal, 47(3): 247-259.   DOI
11 Ahn, J.H., Y.J. Park, W. Kim, and B. Lee, 2016. Simple aerosol correction technique based on the spectral relationships of the aerosol multiple-scattering reflectances for atmospheric correction over the oceans, Optics Express, 24(26): 29659-29669.   DOI
12 Ahn, J.H., Y.J. Park, and H. Fukushima, 2018. Comparison of aerosol reflectance correction schemes using two near-infrared wavelengths for ocean color data processing, Remote Sensing, 10(11): 1791.   DOI
13 Eplee, R.E., W.D. Robinson, S.W. Bailey, D.K. Clark, P.J. Werdell, M. Wang, R.A. Barnes, and C.R. McClain, 2001. Calibration of SeaWiFS. II. vicarious techniques, Applied Optics, 40(36): 6701-6718.   DOI
14 Antoine, D. and A. Morel, 1999. A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones, International Journal of Remote Sensing, 20(9): 1875-1916.   DOI
15 Bailey, S.W., B.A. Franz, and P.J. Werdell, 2010. Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing, Optics Express, 18(7): 7521-7527.   DOI
16 Cox, C. and W. Munk, 1954. Measurement of the roughness of the sea surface from photographs of the sun's glitter, Josa, 44(11): 838-850.   DOI
17 Stumpf, R.P., R.A. Arnone, R. W. Gould, P.M. Martinolich, and V. Ransibrahmanakul, 2003. A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters, NASA Technical Memorandum, 206892, 51-59.
18 Wang, M. and H.R. Gordon, 2002. Calibration of ocean color scanners: how much error is acceptable in the near infrared?, Remote Sensing of Environment, 82(2-3): 497-504.   DOI
19 Thuillier, G., M. Herse, T. Foujols, W. Peetermans, D. Gillotay, P.C. Simon, and H. Mandel, 2003. The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions, Solar Physics, 214(1): 1-22.   DOI
20 Wang, M. and H.R. Gordon, 1994. A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS, Remote Sensing of Environment, 50(3): 231-239.   DOI
21 Wang, M., 2002. The Rayleigh lookup tables for the SeaWiFS data processing: Accounting for the effects of ocean surface roughness, International Journal of Remote Sensing, 23(13): 2693-2702.   DOI
22 Wang, M., 2005. A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure, International Journal of Remote Sensing, 26(24): 5651-5663.   DOI
23 Wang, M., W. Shi, and L. Jiang, 2012. Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region, Optics Express, 20(2): 741-753.   DOI
24 Gordon, H.R. and M. Wang, 1992. Surface-roughness considerations for atmospheric correction of ocean color sensors, 1: The Rayleigh-scattering component, Applied Optics, 31(21): 4247-4260.   DOI
25 Wang, M., W. Shi, L. Jiang, and K. Voss, 2016. NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors, Optics Express, 24(18): 20437-20453.   DOI
26 Zibordi, G., B. Holben, S.B. Hooker, F. Melin, J.F. Berthon, I. Slutsker, D. Giles, D. Vandemark, H. Feng, K. Rutledge, G. Schuster, and A. Al Mandoos, 2006. A network for standardized ocean color validation measurements, Eos, Transactions American Geophysical Union, 87(30): 293-297.
27 Zibordi, G., F. Melin, J.F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D'Alimonte, D. Vandemark, H. Feng, G. Schuster, B.E. Fabbri, S. Kaitala, and J. Seppala, 2009. AERONET-OC: a network for the validation of ocean color primary products, Journal of Atmospheric and Oceanic Technology, 26(8): 1634-1651.   DOI
28 Fukushima, H., A. Higurashi, Y. Mitomi, T. Nakajima, T. Noguchi, T. Tanaka, and M. Toratani, 1998. Correction of atmospheric effect on ADEOS/OCTS ocean color data: Algorithm description and evaluation of its performance, Journal of Oceanography, 54(5): 417-430.   DOI
29 Gordon, H.R., D.K. Clark, J.W. Brown, O.B. Brown, R.H. Evans, and W.W. Broenkow, 1983. Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates, Applied Optics, 22(1): 20-36.   DOI
30 Gordon, H.R., J.W. Brown, and R.H. Evans, 1988. Exact Rayleigh scattering calculations for use with the Nimbus-7 coastal zone color scanner, Applied Optics, 27(5): 862-871.   DOI
31 Gordon, H.R. and M. Wang, 1994. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm, Applied Optics, 33(3): 443-452.   DOI
32 Lavender, S.J., M.H. Pinkerton, G.F. Moore, J. Aiken, and D. Blondeau-Patissier, 2005. Modification to the atmospheric correction of SeaWiFS ocean colour images over turbid waters, Continental Shelf Research, 25(4): 539-555.   DOI
33 Moon, J.E., Y.J. Park, J.H. Ryu, J.K. Choi, J.H. Ahn, J.E. Min, Y.-B. Son, S.-J. Lee, H.-J. Han, and Y.H. Ahn, 2012. Initial validation of GOCI water products against in situ data collected around Korean peninsula for 2010-2011, Ocean Science Journal, 47(3): 261-277.   DOI
34 Morel, A. and L. Prieur, 1977. Analysis of variations in ocean color 1, Limnology and Oceanography, 22(4): 709-722.   DOI
35 Morel, A. and S. Maritorena, 2001. Bio-optical properties of oceanic waters: A reappraisal, Journal of Geophysical Research: Oceans, 106(C4): 7163-7180.   DOI