• Title/Summary/Keyword: 해양지배

Search Result 272, Processing Time 0.029 seconds

Inhomogeneous Helmholtz equation for Water Waves on Variable Depth (비균질 Helmholtz 방정식을 이용한 변동 수심에서의 파랑변형)

  • Kim, Hyo-Seob;Jang, Chang-Hwan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.174-180
    • /
    • 2010
  • The inhomogeneous Helmholtz equation is introduced for variable water depth and potential function and separation of variables are introduced for the derivation. Only harmonic wave motions are considered. The governing equation composed of the potential function for irrotational flow is directly applied to the still water level, and the inhomogeneous Helmholtz equation for variable water depth is obtained. By introducing the wave amplitude and wave phase gradient the governing equation with complex potential function is transformed into two equations of real variables. The transformed equations are the first and second-order ordinary differential equations, respectively, and can be solved in a forward marching manner when proper boundary values are supplied, i.e. the wave amplitude, the wave amplitude gradient, and the wave phase gradient at a side boundary. Simple spatially-centered finite difference numerical schemes are adopted to solve the present set of equations. The equation set is applied to two test cases, Booij’ inclined plane slope profile, and Bragg’ wavy bed profile. The present equations set is satisfactorily verified against other theories including the full linear equation, Massel's modified mild-slope equation, and Berkhoff's mild-slope equation etc.

A Study on Motion of Single Ball with Low Reynolds Number at Performed Interface Layers (액상 계면층을 이용한 저 레이놀즈수 단일강구의 운동연구)

  • 김시영
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.3
    • /
    • pp.117-126
    • /
    • 1987
  • The author has analysed profile of flow in rear of motion with single ball with low Reynolds number performed interface layers. For each system whose viscosity of the lower phase is as large as or large that of the upper phase, the profile has based on the thickness of the ball in the lower phase is nearly independent of both the ball single and the physical properties of the upper phase of the solution. The examine of the characteristics between Darwin's total displacement of the fluid and data obtained in this study, the averaged volume of each cases was corrected by the viscosity in the lower phase. When the viscosity in the lower phase is less than that of the upper phase, the volume based on the displacement of the fluid in rear region of ball are influenced by both ball size and the viscosity ratio of the upper phase to the lower phase. In the range of the Reynolds number less than a constant values, the volume ratio is influenced by both Reynolds number and Moltion number but mainly Reynolds. In range of Reynolds number over than the value, the volume ratio is independent of Reynolds number, but influenced by Moltion number.

  • PDF

The Holocene tidal sedimentary changes in Mosan Bay Estuary, Korea (홀로세 충남 모산만 하구역내 간석지의 퇴적과정)

  • Shin, Young Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.3
    • /
    • pp.37-51
    • /
    • 2011
  • Geomorphic changes and sedimentary changes are investigated by sediment analysis from estuarine tidal flat, Mosan Bay Estuary, which is a tide-dominated and rias estuary. Sediments separatedly deposited during the early Holocene and the late Holocene. There are unconformities between the early Holocene sediment unit and the late Holocene sediment unit. Developments of these unconformities were related with fluctuated sea level change during the mid Holocene. Three deposit zones are spatially classified, which are named "intermittent tide channel deposit zone"(A1, B1, D3), "flood-dominated deposit zone"(A3, B3, C1, C3), and "fluvial sediment deposit zone"(A2, B2). This classification is explained by three main effects; laterally restricted migration of a tidal channel, diffract flood effect and settling lag effect, and fluvial induced reworking. These effects are deserved as main factors which have formed estuarine geomorphology in tidedominated and rias estuary. This study suggests research directions in reconstructing estuarine geomorphic and sedimentary change in west coast of Korea. Furthermore, it gives useful data for making a "land-ocean interaction" model for west coast of Korea.

Effect of Total Resistance of Electrochemical Cell on Electrochemical Impedance of Reinforced Concrete Using a Three-Electrode System (3전극방식을 활용한 철근 콘크리트의 교류임피던스 측정 시 전기화학 셀저항의 영향)

  • Khan, Md. Al-Masrur;Kim, Je-Kyoung;Yee, Jurng-Jae;Kee, Seong-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.82-92
    • /
    • 2022
  • This study aims to investigate the effect of total electrochemical cell resistance (TECR) on electrochemical impedance (EI) measurements of reinforced concrete (RC) by electrochemical impedance spectroscopy (EIS) using a three-electrode system. A series of experimental study is performed to measure electrochemical behavior of a steel bar embedded in a concrete cube specimen, with a side length of 200 mm, in various experimental conditions. Main variables include concrete dry conditions, coupling resistance between sensing electrodes and concrete surface, and area of the counter electrode. It is demonstrated that EI values remains stable when the compliant voltage of a measuring device is sufficiently great compared to the potential drop caused by TECR of concrete specimens. It is confirmed that the effect of the coupling resistance of TECR is far more influential than other two factors (concrete dry conditions and area of the counter electrode). The results in this study can be used as a fundamental basis for development of a surface-mount sensor for corrosion monitoring of reinforced concrete structures exposed to wet-and-dry cycles under marine environment.

Water Masses and Circulations around Korean Peninsula (한반도 주변의 수괴와 해수순환)

  • 승영호
    • 한국해양학회지
    • /
    • v.27 no.4
    • /
    • pp.324-331
    • /
    • 1992
  • Water masses and circulations around Korean peninsula are briefly described based on recent studies. The results of theses studies are discussed from the physical point of view. Oceanic conditions in this region are largely due to the roles played by the Tsushima Warm Current, an onshore extension of the Kuroshio, and local conditions such as wind, surface heat flux and fresh water input etc. To the south and west of Korea, the northern/western border of the Tsushima Warm Current Water is roughly the line joining Taiwan and Cheju island. In summer, it is affected by large amount of fresh water discharged from the Changjiang and in winter, an intrusion of this water into the Yellow Sea is induced by the prevailing northwesterly monsoon wind. To the east of Korea, the Tsushima Warm Current Water presents roughly south of the line joining the wast coast of Korea near 37-38$^{\circ}$N and Tsugaru-Soya Straits in the northern Japan. But this situation, together with those in deeper layers, may greatly be changed by winter atmospheric conditions (wind and surface heat flux). The seas around Korea are not yet physically well understood and many problems wait physical explanations. Some problems, along with personal views of them, are mentioned.

  • PDF

Nonlinear Diffraction of Incident Waves with Side-band Disturbances by a Thin Wedge (변조된 입사파의 쐐기에 의한 산란)

  • 지원식;최항순
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.1
    • /
    • pp.45-53
    • /
    • 1991
  • The nonlinear forward diffraction of a modulated wave train by a thin wedge has been studied analytically. Since the physical variables involved in the problem have vastly different scales, the multiple scale expansion method has been used to obtain an approximate solution. To simplify the problem. the wedge is assumed to be thin and the parabolic approximation is utilized. The wave evolution can be described by a kind of the cubic Schrodinger equation. which consists of the linear time evolution. the lateral dispersion and the nonlinearity. Numerical results indicate that the nonlinearity. which it defined by the ratio of the ratio of the incident wave to the wedge angle. governs the amplitude and the stability of diffracted waves. The instability of dirffracted waves becomes more pronounced as the nonlinearity increases and the modulation ratio decreases. It is also found that the stem waves. initially developed along the wedge. can not sustain for a long time.

  • PDF

Level Set Method Applied on Pseudo-compressibility Method for the Analysis of Two-phase Flow (Pseudo-compressibility 방법에서 이상유동 해석을 위한 Level Set방법의 적용)

  • Ihm Seung-Won;Kim Chongam;Shim Jae-Seol;Lee Dong-Young
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.3
    • /
    • pp.158-165
    • /
    • 2005
  • In order to analyze incompressible two-phase flow, Level Set method was applied on pseudo-compressibility formulation. Level Set function is defined as a signed distance function from the phase interface, and gives the information of the each phase location and the geometric data to the flow. In this study, Level Set function transport equation was coupled with flow conservation equations, and owing to pseudo-compressibility technique we could solve the resultant vector equation iteratively. Two-phase flow analysis code was developed on general curvilinear coordinate, and numerical tests of bubble dynamics and surging wave problems demonstrate its capability successfully.

Analytic Solution to Mild Slope Equation for Transformation of Waves Propagating over an Axi-symmetric Pit (축대칭 함몰지형 위를 진행하는 파의 변형에 관한 완경사 방정식의 해석 해)

  • Jung, Tae-Hwa;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.308-320
    • /
    • 2006
  • An analytic solution to the mild-slope equation is derived for waves propagating over an axi-symmetric pit. The water depth inside the pit varies in proportion to a power of radial distance from the pit center. The governing equation is transformed into ordinary differential equations by using separation of variables, and the coefficients of the equations are transformed into explicit forms by using Hunt's (1979) approximate solution. Finally, by using the Frobenius series, the analytic solution is derived. Due to the feature of Hunt's equation, the present analytic solution is accurate in shallow and deep waters, while it is less accurate in intermediate depth water. The validity of the analytic solution is demonstrated by comparison with numerical solutions. The analytic solution is also used to examine the effects of pit geometry and relative depth on wave transformation.

Flow and Structural Response Characteristics of a Box-type Artificial Reef (상자형 어초의 흐름 및 구조응답 특성)

  • Kim, Dongha;Woo, Jinho;Na, Won-Bae;Yoon, Han-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.113-119
    • /
    • 2014
  • We carried out flow and structural response analysis of a box-type artificial reef (AR), which is made of concrete and structural steel. From the flow analysis, the wake region and drag coefficient were evaluated and accordingly, the structural analysis was performed to evaluate the stress and deformation of the target reef by considering the pressure field obtained from the flow analysis. The concept of wake volume was presented to quantitatively estimate the wake region and its variation according to flow direction and velocity. From the results, it is shown that the flow responses are only sensitive to the flow direction; the structural responses are sensitive to both of the flow velocity and direction although the magnitudes are negligible; and the wake volume became 3.52 times the AR volume with an optimum installation condition ($30^{\circ}$, flow direction) of the target unit.

Cross-Sectional Velocity Variability and Tidal Exchanger in a Bay (만구를 통한 해수유출입과 만내수괴의 해수교환성)

  • 김종화
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.4
    • /
    • pp.353-359
    • /
    • 1990
  • Chinhae Bay, included small ports, is the region which the red tide phenomenon is occurred frequently in summer season. Field sampling of 4 cross-sections in the bay resulted in detailed informations on cross-sectional velocity distributions, salt concentrations and discharge during one consecutive tidal cycle in summer season, 1983. High velocity cores reoccur two times a semi-diurnal tidal cycle at the same cross-sectional location, lower layer, in Kadok Channel during the spring tide. The tidal exchange ratio was estimated by Eulerian method. The range of exchange ratios in central Kadok Channel are 9.3-17% at the spring tide and 16.9-21.8% at the neap tide. On the other hand, its range in Masan bay-mouth is 8.7% at the spring tide and 2.0% neap tide, respectively.

  • PDF