• Title/Summary/Keyword: 해양기상 부이

Search Result 60, Processing Time 0.025 seconds

Comparison of Weather and Wave Data from Ocean Observation Buoys on the Southwestern Coast of Korea during Typhoon Muifa (태풍 무이파 내습시 서남해안 해양관측부이 기상파랑자료 비교 연구)

  • Yoon, Han-Sam;Kwon, Jun-Hyeok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.170-176
    • /
    • 2012
  • This paper analyzes the sea state and characteristics during the August 2011 passage of Typhoon Muifa based on data measured at four ocean weather/wave observation stations (buoys) located on the southwestern coast of Korea. When the typhoon arrived in the area approximately 230 km west of Mokpo at 9 PM on August 7, the decrease in air pressure led to increases in sea level of 25.64 cm at the Chilbal-do buoy, 16.43 cm at the Geomun-do buoy, and 9.60 cm at the Geoje-do buoy. The maximum wave height increased at the Geomun-do buoy about seven times faster than at the Chilbal-do buoy. The low water temperature at Chilbaldo during the typhoon passage probably reduced the wave energy. In the face of the oncoming typhoon, the southwest direction of the wind and waves may have been the result of external forces transporting seawater (energy) from the open sea toward the coast. The weather and ocean data from the Mara-do buoy were negatively correlated with those of Chilbal-do, whereas the data from Geomun-do had a positive correlation with those of Geoje-do.

Analysis of Wave Parametric Characteristics using WAVEWATCH-III Model and Observed Buoy Data (파랑모델과 부이 자료를 이용한 파랑인자 특성 분석)

  • 장유순;서장원;김태희;윤용훈
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.274-284
    • /
    • 2003
  • The analysis of wave parametric characteristics in sea regions in the vicinity of Korean Peninsula have been carried out using the third generation wave model, WAVEWATCH-III (Tolman, 1999) and four observed buoy data of Korea Meteorological Administration (KMA). Significant wave height increases about 2-3 hours later after the increase of wind speed. Maximum correlation coefficient between two parameters appears in Donghae buoy data, which is at off-shore region. When land breeze occurs, it can be found that the correlation coefficient decreases. Time differences between wind speeds and wave heights correspond to significant tidal periods at all of the buoy locations except for Donghae buoy. After verifying the WAVEWATCH-III model results by the comparing with observed buoy data, we have carried out numerical experiments near the Kuroshio current and East Sea areas, and then reconfirmed that when there exist an opposite strong current in the propagation direction of the waves or wind direction, wave height and length get higher and shorter, respectively and vice versa. It has been shown that these modulations of wave parameters are considerable when wind speed is week or mean current is relatively strong, and corresponding values have been represented.

Comparison of Sea Surface Temperature from Oceanic Buoys and Satellite Microwave Measurements in the Western Coastal Region of Korean Peninsula (한반도 서해 연안 해역에서의 해양 부이 관측 수온과 위성 마이크로파 관측 해수면온도의 비교)

  • Kim, Hee-Young;Park, Kyung-Ae
    • Journal of the Korean earth science society
    • /
    • v.39 no.6
    • /
    • pp.555-567
    • /
    • 2018
  • In order to identify the characteristics of sea surface temperature (SST) differences between microwave SST from GCOM-W1/AMSR2 and in-situ measurements in the western coast of Korea, a total of 6,457 collocated matchup data were produced using the in-situ temperature measurements from marine buoy stations (Deokjeokdo, Chilbaldo, and Oeyeondo) from July 2012 to December 2017. The accuracy of satellite microwave SSTs was presented by comparing the ocean buoy data of Deokjeokdo, Chilbaldo, and Oeyeondo stations with the AMSR2 SST data more than five years. The SST differences between the microwave SST and the in-situ temperature measurements showed some dependence on environmental factors, such as wind speed and water temperature. The AMSR2 SSTs were tended to be higher than the in-situ temperature measurements during the daytime when the wind speed was low ($<6ms^{-1}$). On the other hand, they showed positive deviation increasingly as the wind speed increased for nighttime. In addition, increasing tendency of SST differences was related to decreasing sensitivity of microwave sensors at low temperatures and data contamination by land. A monthly analysis of the SST difference showed that unlike the previous trend, which was known to be the largest in winter when strong winds were blowing, the SST difference was largest in summer in Deokjeokdo and Chilbaldo buoy stations. This seemed to be induced by differential tidal mixing at the collocated matchup points. This study presented problems and limitations of the use of microwave SSTs with high contribution to the SST composites in the western coastal region off the Korean peninsula.

Minimizing Machine-to-Machine Data losses on the Offshore Moored Buoy with Software Approach (소프트웨어방식을 이용한 근해 정박 부이의 기계간의 데이터손실의 최소화)

  • Young, Tan She;Park, Soo-Hong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.7
    • /
    • pp.1003-1010
    • /
    • 2013
  • In this paper, TCP/IP based Machine-to-Machine (M2M) communication uses CDMA/GSM network for data communication. This communication method is widely used by offshore moored buoy for data transmission back to the system server. Due to weather and signal coverage, the TCP/IP M2M communication often experiences transmission failure and causing data losses in the server. Data losses are undesired especially for meteorological and oceanographic analysis. This paper discusses a software approach to minimize M2M data losses by handling transmission failure and re-attempt which meant to transmit the data for recovery. This implementation was tested for its performance on a meteorological buoy placed offshore.

Comparative Analysis of Significant Wave Height and Wave Period Observed from Ocean Data and Drifting Buoys (해양기상부이와 표류부이에서 관측된 유의파고 및 파주기 비교 분석)

  • Hyeong-Jun Jo;Baek-Jo Kim;Reno Kyu-Young Choi;Min Roh;KiRyong Kang;Chul-Kyu Lee
    • Journal of Environmental Science International
    • /
    • v.32 no.11
    • /
    • pp.841-852
    • /
    • 2023
  • In this study, the significant wave height and wave period of a specially designed observation system that connected two drifting buoys to an ocean data buoy was observed for 23 days from February 7 to 29, 2020, and the results were compared and analyzed. The results indicated that, in comparison to the ocean data buoy, the drifting buoy exhibited greater variability in significant wave height over shorter time intervals. The wave period of the ocean data buoy also appeared longer than that of the drifting buoy. The greater the observed significant wave height and wave period from both the ocean data and drifting buoys, the more pronounced the differences between the two observation instruments become. Moreover, the study revealed that the disparity in observation methods between the ocean data and drifting buoys did not significantly affect the significant wave height characteristics, as long as the period remained unchanged for up to half of the observation time.

Estimation of Air-Sea Heat Exchange Using BUOY Data at the Yellow Sea, Korea (부이 관측자료를 이용한 서해 해역의 해양-대기 열교환량 산출)

  • kang, Yune-Jeung;Hwang, Seung-On;Kim, Tae-Hee;Nam, Jae-Cheol
    • Journal of the Korean earth science society
    • /
    • v.22 no.1
    • /
    • pp.40-46
    • /
    • 2001
  • Heat exchange between the atmosphere and sea is produced using the data from two 3m discus buoy installed by KMA in 1996. The meteorological and oceanic characteristics at the Dukjukdo and Chilbaldo buoy for the period 1996 ${\sim}$ 2000 are discussed. Daily averaged sensible heat and latent heat flux at each site are estimated from bulk aerodynamic method using given data and analyzed. Quantitative analyses show SST indicates 1-year cycle like air temperature but has 1 month lag. Sea level pressure is lowest in July, humidity is higher from May to August, and wind speed has averaged value of 5 m/s and higher in autumn and winter. Sensible heat flux analyses present that strong heat loss from the sea occurs in autumn and winter and weak heat loss from atmosphere appears in spring and summer, and net sensible heat loss from the sea is found throughout the year. The ocean significantly releases latent heat into atmosphere from August to May but get a little latent heat from atmosphere in other months. Net latent heat loss from the sea is larger than net sensible heat loss except in January and February. Comparison with two sites suggests that the magnitude of heat flux and their fluctuation are generally stronger at Dukjukdo than at Chilbaldo. In case study, both sensible and latent heat flux is a little more at Chilbaldo in March 1998, but substantially stronger at Dukjukdo in November 1996.

  • PDF

Development of Ocean Data Buoy and Real-Time Monitoring Technology (종합관측부이 개발 및 실시간 관측기술)

  • 심재설;이동영;박우선;박광순
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.1
    • /
    • pp.56-67
    • /
    • 1999
  • It is desired to use a domestically manufactured ocean data buoy for the long-term operational ocean monitoring. The ocean data buoy manufacturing technology was introduced through the research cooperation with the Qingkong University of Taiwan. The introduced ocean data buoy system was further expanded and improved for more efficient application for the marine environmental monitoring in Korea. The size of the ocean data buoy is 2.5 m in diameter, which is smaller compared to the NOAA's 3.0 m discus buoy to allow easy land transportation and ocean deployment as well. From the dynamic response test of the buoy carried out numerically, it was shown that the measurement of waves with period greater than 4 seconds is acceptable. The measurement and control system of the data buoy were improved to increase the number of measuring parameters, to reduce power consumption and to enhance better data analysis and management. Each component of the improved data buoy system was described in detail in this paper. Water quality sensors of water temperature, salinity, DO, pH and turbidity were added to the system in addition to the marine meteorological sensors of wind speed and direction, air temperature, humidity, air pressure and wave. Inmarsat satellite communication system is used for the real-time data telemetry from the buoy deployed offshore. A field performance test of the improved and domestically manufactured buoy was carried out for a month at the open sea off Pohang together with DatawelI's Wave-rider buoy to compare the wave data. The results of the test were satisfactory.

  • PDF

Classification and Analysis of Korea Coastal Flooding Using Machine Learning Algorithm (기계학습 알고리즘에 기반한 국내 해수범람 유형 분류 및 분석)

  • CHO, KEON HEE;EOM, DAE YONG;PARK, JEONG SIK;LEE, BANG HEE;CHOI, WON JIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • In this study, Information for the case of seawater flooding and observation data over a period of 10 years (2009~2018) was collected. Using machine learning algorithms, the characteristics of the types of seawater flooding and observations by type were classified. Information for the case of seawater flooding was collected from the reports of the Korea Hydrographic and Oceanographic Agency (KHOA) and the Korea Land and Geospatial Informatics Corporation. Observation data for ocean and meteorological were collected from the KHOA and the Korea Meteorological Agency (KMA). The classification of seawater flooding incidence types is largely categorized into four types, and into 5 development types through combination of 4 types. These types were able to distinguish the types of seawater flooding according to the marine weather environment. The main characteristics of each was classified into the following groups: tidal movement, low pressure system, strong wind, and typhoon. Besides, in consideration of the geographical characteristics of the ocean, the thresholds of ocean factors for seawater flooding by region and type were derived.

Numerical Simulation of Storm Surge and Wave due to Typhoon Kong-Rey of 2018 (2018년 태풍 콩레이에 대한 폭풍해일과 파랑 수치모의)

  • Kwon, Kab Keun;Jho, Myeong Hwan;Yoon, Sung Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.4
    • /
    • pp.252-261
    • /
    • 2020
  • Numerical simulations of the storm surge and waves induced by the Typhoon Kong-Rey incident on the south coast of Korea in 2018 are conducted using the JMA-MSM weather field provided by the Japan Meteorological Agency, and the calculated surge heights are compared with the time history observed at harbours along the south-east coast. For the waves occurring coincidentally with the storm surges the calculated significant wave heights are compared with the data measured using the wave buoys operated by the KHOA (Korea Hydrographic and Oceanographic Agency) and the KMA (Korea Meteorological Administration), and the data observed at AWAC stations of the KIOST (Korea Institute of Ocean Science and Technology). Additional simulations are also performed based on the pressure and wind fields obtained using the best track information provided by the JTWC (Joint Typhoon Warning Center) of the United States, and the results are compared and analyzed. Based on the results of this study it is found that the reliable weather fields are essential for the accurate simulation of storm surges and waves.

수중주거시설 동적계류안정성 설계 연구

  • Park, Sang-Uk;Lee, Han-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.130-133
    • /
    • 2019
  • 수중(submerged)에 부유(floating)식으로 계류되는 거주목적의 구조체 설계(design basis) 관련 연구로서 계류안정성 모델(수중가옥)을 만들고 거동을 정수압적 유체역학적으로 수치분석한다. 임의 가정한 수중가옥의 1)배수량 규모 2) 함체형상에 따른 환경압 하에서의 계류안정성을 a)부력중심, b)무게중심과 가변하중의 변위에 따른 c)함체 기울기를 MATLAB프로그램을 이용하여 산정한다. 나아가 수중가옥의 동적(hydrodynamic) 계류안정성을 임의 시공 장소인 독도의 기상청 울릉도-독도 부이 최근 관측치를 근거로 OrcaFlex프로그램을 이용하여 분석하므로써 수중가옥의 수중건축 시공간상 계류안정성 설계요건(design basis)을 구체화 한다.

  • PDF