• Title/Summary/Keyword: 해수면의 반사계수

Search Result 6, Processing Time 0.021 seconds

Derivation of Coherent Reflection Coefficient at Mid and Low Frequency for a Rough Surface (불규칙 경계면에 대한 중저주파수 간섭 반사 계수 유도)

  • Chu, Young-Min;Seong, Woo-Jae;Byun, Sung-Hoon;Kim, Sea-Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.174-186
    • /
    • 2009
  • When we apply a propagation model to the ocean with boundaries, we can calculate reflected wave using reflection coefficient suggested by Rayleigh assuming the boundaries are flat. But boundaries in ocean such as sea surface and sea bottom have an irregular rough surface. To calculate the reflection loss for an irregular boundary, it is needed to compute the coherent reflection coefficient based on an experimental formula or scattering theory. In this article, we derive the coherent reflection coefficients for a fluid-fluid interface using perturbation theory, Kirchhoff approximation and small-slope approximation respectively. Based on each formula, we can calculate coherent reflection coefficients for a rough sea surface or sea bottom, and then compare them to the Rayleigh reflection coefficient to analyze the reflection loss for a random rough surface. In general, the coherent reflection coefficient based on small-slope approximation has a wide valid region. Comparing it with the coherent reflection coefficients derived from the Kirchhoff approximation and perturbation theory, we discuss a valid region of them.

Broadband Processing of Conventional Marine Seismic Data Through Source and Receiver Deghosting in Frequency-Ray Parameter Domain (주파수-파선변수 영역에서 음원 및 수신기 고스트 제거를 통한 전통적인 해양 탄성파 자료의 광대역 자료처리)

  • Kim, Su-min;Koo, Nam-Hyung;Lee, Ho-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.4
    • /
    • pp.220-227
    • /
    • 2016
  • Marine seismic data have not only primary signals from subsurface but also ghost signals reflected from the sea surface. The ghost decreases temporal resolution of seismic data because it attenuates specific frequency components. For eliminating the ghost signals effectively, the exact ghost delaytimes and reflection coefficients are required. Because of undulation of the sea surface and vertical movements of airguns and streamers, the ghost delaytime varies spatially and randomly while acquiring seismic data. The reflection coefficient is a function of frequency, incidence angle of plane-wave and the sea state. In order to estimate the proper ghost delaytimes considering these characteristics, we compared the ghost delaytimes estimated with L-1 norm, L-2 norm and kurtosis of the deghosted trace and its autocorrelation on synthetic data. L-1 norm of autocorrelation showed a minimal error and the reflection coefficient was calculated using Kirchhoff approximation equation which can handle the effect of wave height. We applied the estimated ghost delaytimes and the calculated reflection coefficients to remove the source and receiver ghost effects. By removing ghost signals, we reconstructed the frequency components attenuated near the notch frequency and produced the migrated stack section with enhanced temporal resolution.

Underwater Acoustic Communication Channel Modeling Regarding Magnitude Fluctuation Based on Ocean Surface Scattering Theory and BELLHOP Ray Model and Its Application to Passive Time-reversal Communication (해수면에 의한 신호 응답 강도의 시변동성 특성이 적용된 벨홉 기반의 수중음향 통신 채널 모델링 및 수동 시역전 통신 응용)

  • Kim, Joonsuk;Koh, Il-Suek;Lee, Yongshik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.116-123
    • /
    • 2013
  • This paper represents generation of time-varying underwater acoustic channels by performing scattering simulation with time-varying ocean surface and Kirchhoff approximation. In order to estimate the time-varying ocean surface, 1D Pierson-Moskowitz ocean power spectrum and Gaussian correlation function were used. The computed scattering coefficients are applied to the amplitudes of each impulse of BELLHOP simulation result. The scattering coefficients are then compared with measured doppler spectral density of signal components which were scattered from ocean surface and the correlation time used in the Gaussian correlation function was estimated by the comparison. Finally, bit-error-rate and channel correlation simulations were performed with the generated time-varying channel based on passive time-reversal communication scenario.

Analysis of the wave motion and the relationship at the submerged breakwater with porous wave absorber using analytic solution (해석해를 통한 수중방파제와 다공성 소파장치에서의 파의 거동 해석 및 관계 분석)

  • Park, Jin-Ho;Yoo, Je-Seon;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2170-2174
    • /
    • 2008
  • 기후상승으로 해수면의 상승으로 인해 삼면이 바다로 둘러싸인 지형적 특성을 가진 우리나라 연안에 파도로부터 시설물의 보호가 중요한 요인으로 꼽히고 있다. 파의 에너지를 저감하여 연안에 위치한 시설물 보호에 많은 연구가 진행되고 있다. 여기서 다루게 될 수중방파제와 다공성 소파장치는 반사와 수심의 변화에 따른 분산효과로 입사파의 에너지 감소를 통해 연안에 위치한 구조물과 배후시설에 대한 피해를 줄이는데 주목적이 있다. 사다리꼴 수중방파제의 전 후면의 기울기를 변화시키며 장주기파의 입사파와 투과파에 대한 연구가 Chang과 Liou(2004)에 의해 연구되었고, 수직 다공성 소파장치의 두께를 변화하며 반사계수와의 상관 관계에 대한 연구가 Madsen(1983)에 의해 진행되었다. 본 연구에서는 해석해를 통해 수중방파제와 다공성 소파장치가 있는 경우에 투과파와 소파장치 전 후면에서의 처오름 높이의 변화에 대해 알아보고, 그에 따른 관계를 알아보고자 한다. 구간은 각각 수심이 일정한 지역과 변화하는 지역, 다공성 소파제가 있는 지역으로 설정하여 각 구간마다 해석해를 적용하여 파고를 측정하였다. 측정된 파고를 이용하여 투과율은 수중방파제를 통과한 입사파와 투과파의 관계를 통해 측정할 수 있다. 수중방파제를 투과한 파는 다공성 소파장치를 통과하면서 파고가 급감하는 현상을 다공성 소파장치 전 후면에서 측정되는 파고를 통해 알 수 있다.

  • PDF

An Expremental Study on Connections Friction Test of Improvement for Coastal Environment Block (Coastal Environments 블록의 개발을 위한 연결부 마찰 실험)

  • Kim, Chun-Ho;Kim, Sang-Hoonq
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.49-52
    • /
    • 2008
  • The plain and simple shape water front structure were designed and installed for wave protection and wave resistance. But the installation of these plain and simple structure cause deficiency of environmental affinity. Also the resonance phenomena from the reflective wave and shipwave of the harbor incident wave caused high tide and wave, consequently maintaining the tranquility of inside harbor, give difficulty for mooring the ship and loading-unloading, increase the possibility of ship collision at the quray wall and landing place To solve these problems, we develop the environmentally friendly wave dissipation block. And installation efficiency, stability of the blocks through experiment of C.E Block Joint.

  • PDF

Characteristic of Wave Diffraction and Reflection for Irregular Waves in SWASH Model Around Small Port Structures (소규모 항만 구조물 주변에서 불규칙파에 대한 SWASH 모형의 반사 및 회절)

  • Kwon, Kyong Hwan;Park, Chang Wook;Park, Il Heum;Kim, Jong Hoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.468-477
    • /
    • 2019
  • The numerical model of Boussinesq approximation, which is mainly used for evaluating the port calmness due to the irregular waves, has a limit of applicability of lattice size in ports such as marinas with narrow port openings of around 30m. The SWASH model controls the partial reflection according to the depth, porosity coefficient and structure size when applying the reflected wave incident on the structure and terrain. In this study, the partial reflection evaluation at the front of the structure according to the bottom shape and the shape of the structure are examined. In order to evaluate the reproducibility of the model due to the diffraction waves entering the term, the area of incidence at right angles and inclination of the structure is constructed and compared with the diffraction theory suggested by Goda et al. (1978). The experimental results of the sectional structure reflectances calculated as the depth mean show reflectances similar to the approximate values of the reflectances presented by Stelling and Ahrens (1981). It is considered that the reflected wave is well reproduced according to the control of the reflected wave at the boundary and the shape and topography of the structure. Compared with previous studies to examine the diffraction of the wave incident from the breakwater opening, the wave incidence angle and the shape of the diffraction wave are very similar to the theoretical values, but both oblique and rectangular incidence In the case where the direction concentration is small, the diffraction degree is underestimated in some sections with the crest ratio of 0.5 to 0.6.