• Title/Summary/Keyword: 해수면변화

Search Result 538, Processing Time 0.034 seconds

Sea level Valiability and eddy in the South Indian Ocean by Multi-satellite data (Topex/Poseidon, ERS 1) (복수위성자료(Topex/Poseidon, ERS1)를 이용한 남인도양의 해수면 변화와 와동류 연구)

  • 윤홍주
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.641-644
    • /
    • 2003
  • Sea level variability and eddy in the Amsterdam-Crozet-Kerguelen region of the South Indian Ocean were studied during 1 year(October 15, 1992~October 15, 1993) using multi-satellite data(Topex/Poseidon, ERSl) produced by signal treatement. We found that generally sea level variabilities(>10cm) exist along the Antarctic Circumpolar Current in the area of 35$^{\circ}$~46$^{\circ}$S and especially strong sea level variabilities(20~30cm) were occurred by the effects of eddy due to botton topography in two small area: 49$^{\circ}$-57$^{\circ}$E and 38$^{\circ}$~42$^{\circ}$S, and 58$^{\circ}$ -64$^{\circ}$E and 42$^{\circ}$-44$^{\circ}$S.

  • PDF

Sea Level Valiability and Eddy in the South Indian Ocean by Multi-satellite Data (Topex/Poseidon, ERS1) (복합위성자료(Topex/Poseidon, ERS1)를 이용한 남인도양의 해수면 변화와 와동류 연구)

  • 윤홍주;서영상
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.4
    • /
    • pp.271-276
    • /
    • 2003
  • Sea level variability and eddy in the Amsterdam-Crozet-Kerguelen region of the South Indian Ocean were studied during 1 year (October 15, 1992~October 15, 1993) using multi-satellite data (Topex/Poseidon, ERS1) produced by signal treatment. We found that sea level variabilities (>10cm) generally exist along the Antarctic Circumpolar Current in the area of 35$^{\circ}$~46$^{\circ}$S and strong sea level variabilities (20~30cm) were especially occurred from the effects of eddy due to bottom topography in two small area: 49$^{\circ}$~57$^{\circ}$E and 38$^{\circ}$~42$^{\circ}$S, and 58$^{\circ}$~64$^{\circ}$E and 42$^{\circ}$~44$^{\circ}$S.

Steric sea level change due to global warming in the northwestern Pacific Ocean for a $CO_2$ quadrupling (북서 태평양에서의 지구온난화로 인한 $CO_2$ 4배증시 해수면의 공간적 변화)

  • 최병호;김동훈;최영진
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2000.09a
    • /
    • pp.188-194
    • /
    • 2000
  • 지역적 기후변동은 전구평균 변화와는 다른 양상을 가진다. 그러나, 현재 전구적 기후변동과 해수면의 변화가 국지적으로 미칠 영향에 대한 추정능력은 매우 제한되어 있다. 본 연구에서는 NCAR(국립 대기 연구소)의 CSM (Climate System Model) 버전 1.2를 이용하여 전구뿐만 아니라 국지적인 시뮬레이션을 함께 수행하였다, 특히 북서태평양과 그 부근지역에 대한 해수변화를 중점적으로 연구했다. (중략)

  • PDF

Sea Level Variabilities in the East Asian Marginal Seas by Topex/Poseidon Altimeter Data (Topex/Poseidon 고도계자료를 이용한 동북아시아 연변해역의 해수면 변화 연구)

  • Yoon, Hong-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.6
    • /
    • pp.1190-1194
    • /
    • 2001
  • The first 7 years of altimeter data from the TOPEX/POSEIDON(T/P) were analyzed to study the surface circulation and its variability in the East Asian Marginal Seas. Long term averaged T/P sea level time series data where compared with in situ sea level measurements from a float-operated type tide gauge around of south Korea and Japan. T/]P data are a large contaminated by 60-day tidal aliasing effect, very near the alias periods of M2 and 52. When this 60-day effect is removed, the data agree well with the tide gauge data with 4.6 cm averaged RMS difference. The T/P derived sea level variability reveals clearly the well-known, strong current-topography such as Kuroshio. The T/P mean sea level of North Pacific(NP) was higher than Yellow Sea(YS) and East Sea(ES). The T/P sea level variability, with strong eddy and meandering, was the largest in eastern part of Japan and this variability was mainly due to the influence of bottom topography in Kuroshio Extension area.

  • PDF

Relation between SSTs in the South Sea and Intensity of Typhoons (남해 해수면온도와 태풍 세기와의 관계)

  • Seol, Dong-Il
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.198-199
    • /
    • 2007
  • Relation between SSTs(Sea Surface Temperatures) in the South Sea and intensity of typhoons which passed through the South Sea was analyzed for 36 years from 1970 to 2005. The SSTs in the South Sea show the rising trends continuously. The mean SST of the last 6 years(2000-2005) is higher 1.21$^{circ}C$ than the mean SST during 10 years(1970-1979). The rising trends are especially strong after 1994. The intensity of typhoon am be seen by the central pressure. The minimum central pressures of typhoons which passed through the South Sea show the descending trends. The mean minimum central pressure of the last 6 years(2000-2005) is lower 9hPa than t1m during 10 years(1970-1979). The correlation analysis shows that the rising of SSTs in the South Sea has relations with the strengthening of intensity of typhoons.

  • PDF

Relations between Variation of Sea Surface Temperatures in the South Sea of Korea and Intensity of Typhoons (남해 해수면온도 변화와 태풍 세기와의 관계)

  • Seol, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.32 no.5
    • /
    • pp.403-407
    • /
    • 2008
  • Relations between variation of SSTs(sea surface temperatures) in the South Sea of Korea and intensity of typhoons which passed through the South Sea of Korea was analyzed for 36 years from 1970 to 2005. The SSTs in the South Sea show the rising trends continuously. The mean SST of the last 10 years(1996-2005) is higher $1.03^{\circ}C$ than the mean SST during 10 years(1970-1979). The rising trends are especially strong after 1994. The intensity of typhoon can be shown by the minimum sea level pressure. The minimum sea level pressures of typhoons which passed through the South Sea show the descending trends. The mean minimum sea level pressure of the last 10 years(1996-2005) is lower 10.1hPa than that during 10 years(1970-1979). The correlation analysis shows that the rising of SSTs in the South Sea has relations with the strengthening of intensity of typhoons.

Variations of Sea Level and Sea Surface Temperature in the Korea seas Peninsula using Satellite Data(Topex/Poseidon and NOAA) (위성자료(Topex/Poseidon, NOAA)를 이용한 한반도 주변해역의 해수면 및 해수온변화 연구)

  • Yoon Hong-Joo;Cho Han-Keun;Lee Bong-Sic;Jeong Young-Deok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.485-488
    • /
    • 2006
  • SLA and SST is high in summer and fall, it is low in spring and winter. The clearly annual period shows through the power spectrum density. A semi-annual period and seasonal period appeared, In. At sea surface variation of satellite data(Mean Sea Level Anomaly) and in-situ data, coefficient-correlation show 0.323 at Mukho which is located in the coastal. Chujado and Ulleungdo is a 0.685 and 0.780, retentively. A coefficient-correlation of SST show higher than sea surface variation as Mukho-0.920, Chujado-0.894 and Ulleungdo-0.815. A comparison between SST and MSLA show 0.77, SST appeared faster about 1 to 3 months than MSLA.

  • PDF

Analysis of Seawater Intrusion Vulnerability for Administrative Districts in East Sea (동해 연안 행정구역 별 해수침투 취약성 분석)

  • Lee, Jae-Beom;Yang, Jeong-Seok;Kim, Il-Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.93-93
    • /
    • 2018
  • 최근 기후변화에 따라 우리나라 해수면 상승률은 평균 2.48mm/yr로 가파르게 상승하고 있다. 동해의 해수면 상승률은 2.69mm/yr 로 전세계 평균 해수면 상승률인 2.0mm/yr 보다 높게 나타나 해수면 상승에 의한 해수침투 피해가 증가할 것으로 예상된다. 해수침투로 인해 1차적으로 연안지역의 해수침투 영역이 증가하고, 지하수의 오염, 농작물의 염수 피해, 산업활동의 제약 등 피해 범위가 지역 사회 범위로 점차 증가한다. 한정된 자원에서 해수침투를 예방하고 피해지역을 줄이는 것에는 많은 어려움이 있다. 이를 위해 동해 연안지역의 행정구역을 대상으로 정량적인 분석을 통하여 해수침투에 취약한 지역을 선정하고 대비하는 것이 가장 효율적인 방법이라고 볼 수 있다. 본 연구에서는 해수침투에 영향을 미치는 인자들을 수집하고, 취약지역을 평가하여 분석하였다. 동해 연안의 11개 시 군 행정구역을 대상으로 해수침투에 영향을 미칠 수 있는 인자를 선택하고 자료를 수집하였다. 수집된 자료는 Re-scale 방법을 이용하여 표준화 하고 엔트로피 방법을 이용하여 산정된 가중치를 각각의 인자에 적용하였다. 산정된 해수침투 취약성 지수는 동해안을 대상으로 하여 각 행정구역에 대한 상대적인 취약성을 나타낸다. 최종적으로 산정된 취약성 지수를 동해안의 행정구역이 도시되어 있는 지도에 나타내어 취약한 지역에 대하여 해수침투 방지 대책 및 시설 보강 계획을 세운다면 해수침투 피해에 효율적인 대처가 가능할 것으로 예상된다.

  • PDF

Sea Level Rise Around Jeju Island due to Global Warming and Movement of Groundwater/seawater Interface in the Eastern Part of Jeju Island (지구온난화에 따른 제주도 근해의 해수면 상승과 제주도 동부 지역 지하수의 염수대 변화)

  • Kim, Kyung-Ho;Shin, Ji-Youn;Koh, Eun-Heui;Koh, Gi-Won;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.68-79
    • /
    • 2009
  • Groundwater is the main water resource in Jeju Island because storage of surface water in reservoir is difficult in the island due to the permeable volcanic rocks. Because of this reason, the groundwater is expected to be very vulnerable to seawater intrusion by global warming, which will cause sea level rise. The long term change of mean sea level around the Korean Peninsula including Jeju Island was analyzed for this study. The sea level rise over the past 40 years was estimated to be of $2.16\;{\pm}\;1.71\;mm/yr$ around the Korean Peninsula. However, the rising trend around the eastern part of Jeju Island was more remarkable. In addition, the groundwater/seawater intrusion monitoring network operated by the Jeju Special Self-Governing Province shows that seawater intrusion becomes more prominent during dry 4-5 months in a year when the sea level increases. This implies that the fresh groundwater lens in the eastern part of Jeju Island is influenced by the sea level rise due to global warming in the long term scale.

Estimation of the Interface of Seawater Intrusion in a Coastal Aquifer System with SHARP Model (SHARP 모델을 이용한 해안 대수층의 해수침투 경계면 추정)

  • 심병완;정상용
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.1
    • /
    • pp.68-74
    • /
    • 2003
  • SHARP numerical model was used to estimate the interface, ranges and seasonal variations of seawater intrusion. The interface obtained from the SHARP model represented more sensitive to seasonal variations than that estimated from the monitoring wells. When TDS and groundwater velocity vector distributions generated by SUTRA simulations are compared to the interfaces obtained from SHARP simulation, the difference of the range on seawater intrusion is less than 50 m, and the range of seawater intrusion from seasonal variations has the difference of about 12 m. These differences are small for the numerical simulation of the coastal aquifer at regional scale. Therefore, the model with sharp interface is very useful to estimate the interface at this study site, where is regional aquifer system in the scale of seawater infusion. However the SHARP model have some limitations in simulating the range of seawater intrusion, when the hydrodynamic dispersion is significant for seawater intrusion at local aquifer system.