• Title/Summary/Keyword: 해성준설토

Search Result 9, Processing Time 0.023 seconds

Shear Strength Characteristics of Artificial Soil Mixture with Pond Ash (매립석탄회가 혼합된 인공혼합토의 전단특성)

  • Kim, Kyoungo;Park, Seongwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.10
    • /
    • pp.39-47
    • /
    • 2013
  • Recently, there have been various domestic construction activities related to the reclamation of the dredged soils to expand the land use. However, the reclaimed grounds made of the dredged soils cause various problems due to highly compressible and low shear strength nature. Particularly, this nature induces huge problems in case of the harbor facilities and road construction on the reclaimed sites. Furthermore, in the reclamation activities, the marine dredged soils are often used instead of the well sorted sand, which induces problems of compressibilities. Therefore, in this study, the mechanical characteristics of artificial soil mixture of kaolinite representing the marine dredged soils and the pond ash. A large consolidometer is designed and manufactured to produce the artificial soil mixture. To represent various mixing ratio between the fly ash and bottom ash in the pond ash, six samples with the same stress history are made with different mixing ratio among kaolinite, bottom ash and fly ash. Isotropically consolidated and undrained compression tests are performed to investigate the shear characteristics of soil mixtures. Based on the experimental results, as the components of mixed ash increase, the friction angle increase and the cohesion values decrease. Also, the porepressure parameters at failure, Af increase with the mixing components of the pond ash. The portion of bottom ash has more impact on the shear behavior than that of fly ash.

Strength Characteristics of Solidified Soil with Hardening Agents made of Industrial By-Products (산업부산물을 이용한 지반고화제 혼합토의 강도특성)

  • Kim, Youngsang;Yu, Geunmo;Mun, Kyoungju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.19-26
    • /
    • 2012
  • In this study, geotechnical tests including unconfined compression test were carried out to evaluate the ground improvement effect of the hardening agent, which has been developed by using inter-chemical reactions between slag, fly ash, phosphogypsum and bypass dust on the weathered granite soil and dredged marine clay. Test results show that the strength of weathered granite soil mixed with hardening agent B-2, which uses phosphogypsum as an activator, is higher than that of B-1, which uses bypass dust as an activator. Strengths of B-1 & B-2 hardening agent mixed soil show only 44%~60% of strength of OPC(Ordinary Portland Cement, OPC) mixed soil. However, since B-1 and B-2 agents are made of industrial by-products, they seem economically more effective than ordinary portland cement as well as other present hardening agents. Test results on dredged marine clay show that unconfined compression strength increases with amount of agent and curing days. Unconfined compression strength of 14% B-1 agent mixed soil increases linearly with curing days and reaches only 40% of OPC mixed soil. While unconfined compression strength of 14% B-2 agent mixed soil increases exponentially and reaches 133% of OPC mixed soil. Relationship between deformation modulus and unconfined compression strength of B-1 and B-2 mixed soil can be expressed as $E_{50}=(20{\sim}47)_{qu,28}$, which is similar with lower limit of OPC mixed dredged marine clay.

An Experimental Study on the Settling Behavior of Marine Fluid Mud In the West Seaside of Korea (Banweol area) (반월식역 해성토의 침강특성에 관한 실험적 연구)

  • 김수삼
    • Geotechnical Engineering
    • /
    • v.3 no.3
    • /
    • pp.49-62
    • /
    • 1987
  • The settling behavior of marine fluid mud in the west seaside of Korea has been studied with theoretical analysis and experimental technique. This paper describes laboratorial experiments on the sedimentation and the deposition of soil particles in seawater, with measurement of velocity of interface, the water contents, the settlement. And the reseults are compared with an earlier theoretical research, the hindered settling theory of Kynch, McRoberts and Nixon. According to the results the process of Banweol mud sedimentation showed the typical mode of the hindered settling under the condition of initial water content, wo=1000%. Also, the falling rates of fluid mud interface from initial settling height vs. the rising rates of soil deposit from the bottom of the test tub were measured by the function of time, the correlati tranship of them demonstrated as a straight line and obtained an experimental formula.

  • PDF

A Study on Characteristic of Sedimentation-Consolidation Conduct for Dredged Soil through Geo-Centrifuge Test (원심모형실험을 이용한 준설토의 침강압밀 거동 특성)

  • Park, Hyunchul;Kang, Hongsig;Sun, Seokyoun;Park, Jongseo;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.2
    • /
    • pp.59-65
    • /
    • 2017
  • The costal reclamation construction is for making reclaimed land by dredging marine clay with seawater, and then bringing the dredged soil into the reclaimed land. During the process, the dredged soil in the reclaimed land undergoes the sedimentation-consolidation process. Among the processes, the consolidation is a very critical factor when planning reclaimed land because of its requiring time and settlement. In order to predict the requiring time and settlement, the Column test, which was suggested by Yano, has been usually used in the nation. However, the test method needs a very long time to identify the characteristic of sedimentation-consolidation of dredged soil. Therefore, in this study, in order to supplement the weakness of the Column test which needs such a long time, and in order to identify the characteristic of the sedimentation-consolidation for dredged soil in a short time, the Geo-centrifuge test was examined as an alternative method. The result considered that Geo-centrifuge test would be useful to identify the characteristic of sedimentation-consolidation for dredged soil efficiently.

Dynamic Behavior of the Breasting Dolphin Caused by Wave Power (파력에 의한 돌핀의 거동 특성)

  • Cho, Won Chul;Yoon, Gyeong Seug
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.281-287
    • /
    • 2009
  • In this study, the behavior of breasting dolphin caused by the maximum wave height in the coastal area of Incheon has been investigated. The dynamic deflection, shear stress and moment of pile are analyzed using the coefficient of horizontal subgrade reaction resulted from loading tests for different DWT (Dead Weight Tonnage). The dynamic characteristics of pile in accumulated and dredged soils show almost the same pattern. It is shown that the resistance of dolphin to external load increases as the diameter of pile increases. The bettered pile dolphin is more than 10 times stable than the vertical pile type based on the study of dynamic characteristics of dolphin.

Evaluation of Constitutive Relationships and Consolidation Coefficients for Prediction of Consolidation Characteristics of Dredged and Reclaimed Ground (준설매립지반의 압밀거동 예측을 위한 구성관계식 산정 및 압밀정수 평가)

  • Jun, Sanghyun;Yoo, Namjae;Park, Byungsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.6
    • /
    • pp.31-41
    • /
    • 2008
  • Consolidation characteristics of reclamated ground with dredged soil and methods of evaluating them are investigated in this paper. For a dredged and reclamated ground with a very high water content, self-weight consolidation being progressed, its consolidation characteristics are difficult to find since it is almost impossible to have a undisturbed sample. In order to overcome such a problem, methods of laboratory tests with disturbed sample were studied to obtain consolidation parameters required to analyze consolidation settlement in practices, using the conventional infinitesimal consolidation theory, were evaluated by carrying out various laboratory tests with disturbed soils such as oedometer test, constant rate of deformation test, Rowe-cell tests with ring diameters of 60 mm, 100 mm and 150 mm and the centrifuge model tests with 40 g-levels. Constitutive relations of void ratio - effective vertical stress - permeability were evaluated by using the inverse technique implemented with the finite strain consolidation theory and results of centrifuge model tests. Design soil parameters related to consolidation such as compression index, swelling index, coefficient of volume change and vertical and horizontal consolidation coefficients were proposed properly by analyzing the various test results comprehensively.

  • PDF

Analysis of Microbial Community During the Anaerobic Dechlorination of Perchloroethylene and Trichloroethylene (Perchloroethylene과 Trichloroethylene의 혐기적 탈염소화 및 미생물 군집 분석)

  • Lee Jae-Won;Kim Byung-Hyuk;Ahn Chi-Yong;Kim Hee-Sik;Yoon Byung-Dae;Oh Hee-Mock
    • Korean Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.281-286
    • /
    • 2005
  • In this study, the anaerobic enrichment cultivation was performed with the sediments and the dredged soils from the cities of Ulsan, Masan, Yeosu, Gwangyang, Ansan and Seongnam. Acetate as an electron donor and PCE (perchloroethylene) or TCE (trichloroethylene) as an electron acceptor were injected into the serum bottle with an anaerobic medium. After the incubation of 12 weeks, the removal efficiency of PCE was highest at $70\%$ in the treatment with the sediment of Ulsan. Also, the bacterial community structure was analyzed by D-DGGE (double denatured gradient gel electrophoresis) through PCR-based 16S rDNA approaches. The dominant species id the anaerobic enrichment were found to belong to the genus of Desulfovibrio.

Estimation on Discharge Capacity of Prefabricated Vortical Drains Considering Influence Factors (영향인자를 고려한 연직배수재의 통수능 평가)

  • Shin Eun-Chul;Park Jeong-Jun;Kim Jong-In
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.13-23
    • /
    • 2005
  • The prefabricated vertical drains (PVDs) are one of the most widely used techniques to accelerate the consolidation of soft clay deposits and dredged soil. Discharge capacity is one of the factors affecting the behavior of PVDs. In the field, a PVD is confined by clay or dredged soil, which is normally remolded during PVD installation. Under field conditions, soil particles may enter the PVD drainage channels, and the consolidation settlement of the improved subsoil may cause 131ding of the PVD. These factors will affect the discharge capacity of the PVDs. In this study an experimental study was carried out to estimate the discharge capacity of three different types of PVDs by utilizing the large-scale laboratory model testing and small-scale laboratory model testing equipments. The several factors such as confinement condition (confined by soft marine clay or dredged soil) and variations of the discharge capacity were studied with time under soil specimen confinement, The test results indicated that discharge capacity decreases with increasing load, time, and hydraulic gradient. With load application, the cross-sectional area of the drainage channel of PVD decreases because the filter of PVD is pressed into the core. The discharge capacity of the soft marine clay-confined PVDs is much lower than that of the dredged soil-confined PVDs.

Experimental Study on behavior of the Lightweight Air-foamed Soil Considering Freezing-thawing and Soaking Conditions (동결융해 및 수침조건을 고려한 경량기포혼합토의 거동 실험 연구)

  • Kang, Daekyu;Shin, Eunchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.5
    • /
    • pp.37-46
    • /
    • 2016
  • In order to determine the variability of environmental characteristics of lightweight air-foamed soil using marine clay according to freezing-thawing and soaking conditions, unconfined compressive strength of the lightweight air-foamed soil samples made by changing the amount of cement under curing conditions of outdoor low temperature, underground or indoor wetting were observed. Compressive strength was not increased under freezing-thawing (temperature range of $-9.1^{\circ}C{\sim}17.2^{\circ}C$) regardless of the amount of cement but the more cement using, it was increased rapidly by underground curing conditions within 30 cm beneath ground level. Therefore, it is necessary to install insulation layer cutting off exterior cold air after construction of lightweight air-foamed soil in condition of freezing-thawing. Bulk density was increased too small under the long-time soaking condition, it tended to decrease rapidly when samples were dried up and had below 6% of water contents. But variability of compressive strength and bulk density was very small for preventing drying and keeping its wet state. The lightweight air-foamed soil that installed beneath ground water level or covered by soil can be evaluated as a long-term reliable construction material.