• Title/Summary/Keyword: 해석학적 현장성

Search Result 142, Processing Time 0.025 seconds

Study for influence by installing structures at lower the Han (한강하구지역의 구조물 설치에 의한 수리학적 영향)

  • Ahn, Kyung-Hoon;Choi, Gye-Woon;Jo, Hyeong-Geun;Jo, Sang-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.858-862
    • /
    • 2009
  • 한강하구는 하천의 담수와 해수가 만나 혼합되는 전이수역으로 유역면적이 $38,655km^2$이며, 한반도 17.4% 면적의 빗물이 모여 남한강, 북한강, 임진강, 예성강이 되어 하구에서 합류하고, 그 70%가 홍수기에 집중 방류되는 지역으로 매년 토사퇴적량이 증가하여 홍수위가 증가하고 있다. 현재 한강하구의 각종 개발계획이 발표되면서 지형 변화에 대한 한강하구의 침식 및 퇴적 등의 수리학적 영향 검토에 대해 관심이 커지고 있다. 따라서 한강하구 전체의 복학접인 상호작용으로 인한 유사의 이동과 침식 및 퇴적에 대한 수치적인 연구와 수공구조물 등과 관련된 국부적인 유사이동문제에 대해 평시와 홍수시의 수위 및 유속을 산정하고 한강 하구에 대한 유사 이동흐름을 분석 할 필요성이 있다. 이에 본 연구에서는 강화도 인근을 수로로 가정하여 한강하구의 하류경계를 연장하여 수치모의를 실시하였다. 주변환경을 고려한 분석은 배재하였으며 수공구조물에 따른 조건을 변화하여 해석함으로써 수위 및 유속 등의 수치적 해석을 위해 MIKE 11프로그램을 이용하였다. 연구 결과, 한강하구와 서해 접경지역에 수공구조물을 설치함으로써 강화도 인근의 수로에 유출면적이 감소하여 강화도 북부의 청주초 일대의 수위가 높아지며, 이는 김포, 임진강 상류, 신곡수중보 하류까지 미치는 것으로 나타났다. 향후 수공구조물 설치에 의한 한강하구 지역의 침식원인 기작 및 침식유발 원인 규명을 위해 현장 조사, 실험 연구 등이 진행되어야 할 것이다.

  • PDF

Relationship between fracture distribution and the acidity of mine drainage at the Il-Gwang Mine (일광광산의 절리분포 특성과 광산배수 산성도의 관계)

  • Choi, Jae-Young;Um, Jeong-Gi;Kwon, Hyun-Ho;Shim, Yon-Sik
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.425-436
    • /
    • 2010
  • We established a stochastic 3-D fracture network system for fractured rock masses located in Il-Gwang Mine, Busan, to explore the relationship between the acidity of mine drainage and fracture geometry. A field scanline survey and borehole image processing were performed to estimate the best probability distributions of fracture geometry parameters. The stochastic 3-D fracture network system constructed for the rock masses was validated and deemed to be successful. The 3-D fracture network model was suitable for developing conceptual ideas on fluid flow in fractures at a field experimental site. An injection well and three observation wells were drilled at the field experimental site to monitor the acidity of mine drainage induced by the injection of fresh water. The field experiment, which was run for 29 days, yielded a significant relationship (with a high coefficient of determination) between the fracture geometry parameters and the acidity of mine drainage. The results show that pH increased with increasing relative frequency of fracture strike, and decreased with increasing fracture density. The concentration of $SO^{2-}_4$ decreased with increasing relative frequency of fracture strike, and increased with increasing fracture density.

Fracture Network Analysis of Groundwater Folw in the Vicinity of a Large Cavern (분리열극개념을 이용한 지하공동주변의 지하수유동해석)

  • 강병무
    • The Journal of Engineering Geology
    • /
    • v.3 no.2
    • /
    • pp.125-148
    • /
    • 1993
  • Groundwater flow in fractured rock masses is controlled by combined effects of fracture networks, state of geostafic stresses and crossflow between fractures and rock matrix. Furthermore the scaie dependent, anisotropic properties of hydraulic parameters results mainly from irregular paftems of fracture system, which can not be evaluated properly with the methods available at present. The basic assumpfion of discrete fracture network model is that groundwater flows only along discrete fractures and the flow paths in rock mass are determined by geometric paftems of interconnected fractures. The characteristics of fracture distribution in space and fracture hydraulic parameters are represented as the probability density functions by stochastic simulation. The discrete fracture network modelling was aftempted to characterize the groundwater flow in the vicinity of existing large cavems located in Wonjeong-ri, Poseung-myon, Pyeungtaek-kun. The fracture data of $1\textrm{km}^2$ area were analysed. The result indicates that the fracture sets evaluated from an equal area projection can be grouped into 6 sets and the fracture sizes are distributed in longnormal. The conductive fracture density of set 1 shows the highest density of 0.37. The groundwater inflow into a carvem was calculated as 29ton/day with the fracture transmissivity of $10^{-8}\textrm{m}^2/s$. When the fracture transmissivity increases in an order, the inflow amount estimated increases dramatically as much as fold, i.e 651 ton/day. One of the great advantages of this model is a forward modelling which can provide a thinking tool for site characterization and allow to handle the quantitative data as well as qualitative data.

  • PDF

Monitoring of Cut-Slope Behavior with Consideration of Rock Structure and Failure Mode (개착사면의 구조적 특성과 파괴양상을 고려한 계측 해석)

  • Cho, Tae-Chin;Park, So-Young;Lee, Sang-Bae;Lee, Geun-Ho;Won, Kyung-Sik
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.451-466
    • /
    • 2006
  • Analysis of slope behavior concerning the structural characteristics of field rock mass can be processed by virtue of borehole information of joint orientation and position acquired from DOM drilled core. Anticipated sliding potential of pre-failed rock slope is analyzed and the regional slope instability is investigated by inspecting the hazardous joints and blocks the traces of which is projected on the cut-face. Cross section has been set at the center of rock slope and the traces of both joints and tetrahedral blocks, which potentially can induce the slope failure, are drawn to investigate the failure modes and the triggering mechanism. Automated monitoring system has been established to measure the slope movement and especially, inclinometer has been installed inside DOM borehole to analyze the slope movement by considering the internal rock structure. Algorithms for predicting the slope failure time have been reviewed and the significance of heavy rainfall on the slope behavior has been investigated.

Modeling of Transverse Mixing in Natural Streams Using 2-D Random-Walk Model (2차원 Random-Walk 모형을 이용한 자연하천의 횡확산 해석)

  • Seo, Il-Won;Cheong, Tae-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.1
    • /
    • pp.61-70
    • /
    • 1999
  • The two-dimensional Random-Walk model in which fluid and pollutant particles are tracked using statistical concept was developed to simulate dispersion processes in natural streams. The calibration of the model shows that the error decreases as the number of grid increases, and/or the number of particles in each grid increases. The proposed model is tested against the dispersion data collected in the Grand River, Canada. The simulation results show that the 2-D Random-Walk model describes two-dimensional mixing phenomena occurred in the irregular meandering stream very accurately.

  • PDF

Program Development to Evaluate Permeability Tensor of Fractured Media Using Borehole Televiewer and BIPS Images and an Assessment of Feasibility of the Program on Field Sites (시추공 텔리뷰어 및 BIPS의 영상자료 해석을 통한 파쇄매질의 투수율텐서 계산 프로그램 개발 및 현장 적용성 평가)

  • 구민호;이동우;원경식
    • The Journal of Engineering Geology
    • /
    • v.9 no.3
    • /
    • pp.187-206
    • /
    • 1999
  • A computer program to numerically predict the permeability tensor of fractured rocks is developed using information on discontinuities which Borehole Televiewer and Borehole Image Processing System (BIPS) provide. It uses orientation and thickness of a large number of discontinuities as input data, and calculates relative values of the 9 elements consisting of the permeability tensor by the formulation based on the EPM model, which regards a fractured rock as a homogeneous, anisotropic porous medium. In order to assess feasibility of the program on field sites, the numerically calculated tensor was obtained using BIPS logs and compared to the results of pumping test conducted in the boreholes of the study area. The degree of horizontal anisotropy and the direction of maximum horizontal permeability are 2.8 and $N77^{\circ}CE$, respectively, determined from the pumping test data, while 3.0 and $N63^{\circ}CE$ from the numerical analysis by the developed program. Disagreement between two analyses, especially for the principal direction of anisotropy, seems to be caused by problems in analyzing the pumping test data, in applicability of the EPM model and the cubic law, and in simplified relationship between the crack size and aperture. Aside from these problems, consideration of hydraulic parameters characterizing roughness of cracks and infilling materials seems to be required to improve feasibility of the proposed program. Three-dimensional assessment of its feasibility on field sites can be accomplished by conducting a series of cross-hole packer tests consisting of an injecting well and a monitoring well at close distance.

  • PDF

A Study on the Distinct Element Modelling of Jointed Rock Masses Considering Geometrical and Mechanical Properties of Joints (절리의 기하학적 특성과 역학적 특성을 고려한 절리암반의 개별요소모델링에 관한 연구)

  • Jang, Seok-Bu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1998.05a
    • /
    • pp.35-81
    • /
    • 1998
  • Distinct Element Method(DEM) has a great advantage to model the discontinuous behaviour of jointed rock masses such as rotation, sliding, and separation of rock blocks. Geometrical data of joints by a field monitoring is not enough to model the jointed rock mass though the results of DE analysis for the jointed rock mass is most sensitive to the distributional properties of joints. Also, it is important to use a properly joint law in evaluating the stability of a jointed rock mass because the joint is considered as the contact between blocks in DEM. In this study, a stochastic modelling technique is developed and the dilatant rock joint is numerically modelled in order to consider th geometrical and mechanical properties of joints in DE analysis. The stochastic modelling technique provides a assemblage of rock blocks by reproducing the joint distribution from insufficient joint data. Numerical Modelling of joint dilatancy in a edge-edge contact of DEM enable to consider not only mechanical properties but also various boundary conditions of joint. Preprocess Procedure for a stochastic DE model is composed of a statistical process of raw data of joints, a joint generation, and a block boundary generation. This stochastic DE model is used to analyze the effect of deviations of geometrical joint parameters on .the behaviour of jointed rock masses. This modelling method may be one tool for the consistency of DE analysis because it keeps the objectivity of the numerical model. In the joint constitutive law with a dilatancy, the normal and shear behaviour of a joint are fully coupled due to dilatation. It is easy to quantify the input Parameters used in the joint law from laboratory tests. The boundary effect on the behaviour of a joint is verified from shear tests under CNL and CNS using the numerical model of a single joint. The numerical model developed is applied to jointed rock masses to evaluate the effect of joint dilation on tunnel stability.

  • PDF

A Study on Velocity-Log Conductivity, Velocity-Head Cross Covariances in Aquifers with Nonstationary Conductivity Fields (비정체형 지하대수층의 속도-대수투수계수, 속도-수두 교차공분산에 관한 연구)

  • Seong, Gwan-Je
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.363-373
    • /
    • 1998
  • In this study, random flow field in a nonstationary porous formation is characterized through cross covariances of the velocity with the log conductivity and the head. The hydraulic head and the velocity in saturated aquifers are found through stochastic analysis of a steady, two-dimensional flow field without recharge. Expression for these cross covariances are obtained in quasi-analytic forms all in terms of the parameters which characterize the nonstationary conductivity field and the average head gradient. The cross covariances with a Gaussian correlation function for the log conductivity are presented for two particular cases where the trend is either parallel or perpendicular to the mean head gradient and for separation distances along and across the mean flow direction. The results may be of particular importance in transport predictions and conditioning on field measurements when the log conductivity field is suspected to be nonstationary and also serve as a benchmark for testing nonstationary numerical codes. Keywords : cross covariance, nonstationary conductivity field, saturated aquifer, stochastic analysis.

  • PDF

Use of the Modified Linear Curve Fitting Method in Analyzing Slug Tests to Evaluate Hydraulic Conductivity of Vertical Cutoff Walls (순간 변위시험 (Slug Test)을 이용한 연직차수벽의 투수계수 산정시 수정된 Linear Curve Fitting 방법의 적용)

  • Choi, Hang-Seok;Daniel David E.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.338-347
    • /
    • 2006
  • 연직차수벽은 오염지역이나 폐기물 매립장에서 오염된 지하수 (때로는 오염된 수증기) 흐름을 차단하거나 또는 오염지역의 정화처리시 효율을 높이기 위하여 외부로부터 지하수 흐름을 막기 위해 설치된다. 이 논문에서는 연직차수벽의 가장 중요한 설계요소인 차수벽체의 현장 투수성을 평가하는 방법들중 가장 보편적으로 사용되는 단공식 순간 변위시험 (slug test)을 소개한다. 연직차수벽에서 실행된 단공식 순간 변위시험 결과를 해석하기 위해서, 연직차수벽의 압축성과 기하학적인 특성을 고려한 수정된 linear curve fitting 방법을 제안하고 그 적용성을 case study를 통해 평가한다. 기존의 대수층 투수계수 산정에 이용된 curve fitting 방법들에 비하여 수정된 linear curve fitting 방법은 보다 정확한 연직차수벽체의 투수성을 평가하도록 한다.

  • PDF

Effect of Joint Geometry on Anisotropic Deformability of Jointed Rock Masses (절리의 기하학적 속성이 절리성 암반의 이방적 변형 특성에 미치는 영향)

  • Ryu, Seongjin;Um, Jeong-Gi
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.271-285
    • /
    • 2020
  • In this study, a numerical experiment related to the stress-strain analysis was performed on 3-D discrete fracture network(DFN) systems based on the distinct element method to evaluate the effect of joint geometry on deformability of jointed rock masses. Using one or two joint sets with deterministic orientation, a total of 12 3-D DFN blocks having 10m cube domain were generated with different joint density and size distribution. Directional deformation modulus of the DFN cube blocks were estimated along the axis directions of 3-D cartesian coordinate. In addition, deviatoric stress directions were chosen at every 30° of trend and plunge in 3-D for some DFN blocks to examine the variability of directional deformation modulus with respect to joint geometry. The directional deformation modulus of the DFN block were found to reduce with the increase of joint size distribution. The increase in joint density was less likely to have a significant effect on directional deformation modulus of the DFN block in case of the effect of rock bridges was relatively large because of short joint size distribution. It, however, was evaluated that the longer the joint size, the increase in the joint density had a more significant effect on the anisotropic deformation modulus of the DFN block. The variation of the anisotropic deformation modulus according to the variations in joint density and size distribution was highly dependent on the number of joint sets and their orientation in the DFN block. Finally, this study addressed a numerical procedure for stress-strain analysis of jointed rock masses considering joint geometry and discussed a methodology for practical application at the field scale.