• 제목/요약/키워드: 해석가능한 기계학습

검색결과 27건 처리시간 0.031초

해석가능한 기계학습을 적용한 소지역 인구 추정에 관한 연구: 부산광역시를 대상으로 (A Study on the Population Estimation of Small Areas using Explainable Machine Learning: Focused on the Busan Metropolitan City)

  • 김유현;김동현
    • 한국지리정보학회지
    • /
    • 제26권4호
    • /
    • pp.97-115
    • /
    • 2023
  • 최근 저출산, 고령화 등 인구의 구조가 급격히 변화하고 있고 인구 분포의 불균등성이 확대되고 있는 시점에서 인구 추정 방식의 변화가 요구되고 있으며 소지역 단위에서 보다 정확한 추정이 요구되고 있다. 본 연구는 이러한 인구 추정 방식 변화 요구에 대응하기 위해 부산광역시를 대상으로 해석가능한 기계학습 방법을 적용하여 500m 격자 단위에서 2040년 인구를 추정하는 것을 목적으로 하고 있다. 해석가능한 기계학습의 방법과 코호트 요인법을 각각 적용하여 격자별 인구추정 결과를 비교해본 결과, 기계학습 방법이 인구 구조 변동에 영향을 미칠 가능성이 있는 여러 변수의 조합 반영이 가능하여 보다 낮은 오차를 도출함으로써 소지역과 같이 인구 변화폭이 큰 지역의 추정에 있어 적용력이 높음을 확인하였다. 인구감소시대에 과대추정된 인구 값은 도시계획에서 투자의 비효율성과 특정 부문에 대한 과잉 투자에 따른 타 부문에서의 질적 저하와 같은 문제를 일으킬 가능성이 높으며, 과소추정된 인구 값 역시 도시의 축소를 가속화시켜 삶의 질을 저하시키는 문제를 초래하므로 적절한 인구 추정 방법과 대안을 마련해야 할 필요가 있을 것으로 판단된다.

기계습의 영상인식결과에 대한 입력영상의 영향도 분석 기법 (Analysis Method of influence of input for Image recognition result of machine learning)

  • 김도완;김우성;이은헌;김현철
    • 한국컴퓨터교육학회 학술대회
    • /
    • 한국컴퓨터교육학회 2017년도 하계학술대회
    • /
    • pp.209-211
    • /
    • 2017
  • 기계학습은 인공지능(AI, Artificial Intelligence)의 일종으로 다른 인공지능 알고리즘이 정해진 규칙을 기반으로 주어진 임무(Task)를 해결하는 것과는 달리, 기계학습은 수집된 Data를 기반으로 최적의 솔루션을 학습한 후 미래의 값들을 예측하거나 해석하는 방법을 사용하고 있다. 더욱이 인터넷을 통한 연결성의 확대와 컴퓨터의 연산능력 발전으로 가능하게 된 Big-Data를 기반으로 하고 있어 이전의 인공지능 알고리즘에 비해 월등한 성능을 보여주고 있다. 그러나 기계학습 알고리즘이 Data를 학습할 때 학습 결과를 사람이 해석하기에 너무 복잡하여 사람이 그 내부 구조를 이해하는 것은 사실상 불가능하고, 이에 따라 학습된 기계학습 모델의 단점 또는 한계 등을 알지 못하는 문제가 있다. 본 연구에서는 이러한 블랙박스화된 기계학습 알고리즘의 특성을 이해하기 위해, 기계학습 알고리즘이 특정 입력에 대한 결과를 예측할 때 어떤 입력들로 부터 영향을 많이 받는지 그리고 어떤 입력으로부터 영향을 적게 받는지를 알아보는 방법을 소개하고 기존 연구의 단점을 개선하기 위한 방법을 제시한다.

  • PDF

이미지 기반 적대적 사례 생성 기술 연구 동향

  • 오희석
    • 정보보호학회지
    • /
    • 제30권6호
    • /
    • pp.107-115
    • /
    • 2020
  • 다양한 응용분야에서 심층신경망 기반의 학습 모델이 앞 다투어 이용됨에 따라 인공지능의 설명 가능한 동작 원리 해석과, 추론이 갖는 불확실성에 관한 분석 또한 심도 있게 연구되고 있다. 이에 심층신경망 기반 기계학습 모델의 취약성이 수면 위로 드러났으며, 이러한 취약성을 이용하여 악의적으로 모델을 공격함으로써 오동작을 유도하고자 하는 시도가 다방면으로 이루어짐에 의해 학습 모델의 강건함 보장은 보안 분야에서의 쟁점으로 부각되고 있다. 모델 추론의 입력으로 이용되는 이미지에 교란값을 추가함으로써 심층신경망의 오분류를 발생시키는 임의의 변형된 이미지를 적대적 사례라 정의하며, 본 논문에서는 최근 인공지능 및 컴퓨터비전 분야에서 이루어지고 있는 이미지 기반 적대적 사례의 생성 기법에 대하여 논한다.

딥러닝 기반 탄성파 단층 해석을 위한 합성 학습 자료 생성 (Synthetic Training Data Generation for Fault Detection Based on Deep Learning)

  • 최우창;편석준
    • 지구물리와물리탐사
    • /
    • 제24권3호
    • /
    • pp.89-97
    • /
    • 2021
  • 탄성파 자료에서의 단층 해석은 기계학습을 적용하기 매우 적합한 분야라고 할 수 있다. 결과적으로 다양한 형태의 기계학습 기반 단층 해석 기술들이 개발되고 있으며, 특히 합성 자료를 사용해 기계학습 모델을 훈련시키는 연구들이 중점적으로 수행되고 있다. 합성 자료를 사용할 경우 기계학습 모델을 훈련시키기 위한 대량의 자료를 확보하기가 용이하고, 정확한 단층 구조 라벨을 함께 제작할 수 있다는 장점이 있다. 합성 자료로 훈련시킨 모델을 사용해 현장 자료를 해석하기 위해서는 모델 훈련에 사용한 합성 자료가 지질학적으로 현실적이어야 한다. 이 연구에서는 실제 현장 자료와 유사한 합성 자료 제작을 위한 기술을 소개한다. 먼저 현실적인 단층 구조가 포함된 반사계수 모델을 제작한 후 일방향 파동 방정식 모델링을 적용해 효율적으로 겹쌓기 단면을 생성한다. 생성된 겹쌓기 단면에 참반사보정을 적용해 회절파의 영향을 제거하고, 무작위 잡음을 추가함으로써 현장 자료와 비슷한 형태의 합성 자료를 생성할 수 있다. 생성한 합성 자료를 U-Net 구조의 합성곱 신경망 모델에 적용하여 검증한 결과, 현실적으로 만들어진 합성 자료는 현장 자료에 적용이 가능한 딥러닝 모델을 효과적으로 훈련시킬 수 있다는 것을 확인하였다.

유전 프로그래밍을 활용한 제조 빅데이터 분석 방법 연구 (Genetic Programming based Manufacutring Big Data Analytics)

  • 오상헌;안창욱
    • 스마트미디어저널
    • /
    • 제9권3호
    • /
    • pp.31-40
    • /
    • 2020
  • 현재 제조 분야 빅데이터 분석을 위하여 black-box 기반 기계 학습 알고리즘을 활용하고 있다. 해당 알고리즘은 높은 분석 정합성 가지는 장점이 있지만, 분석 결과에 대한 해석이 어렵다는 단점이 있다. 그러나 제조업에서는 분석 알고리즘은 제조 공정 원리 기반 해석을 통하여 결과의 근거 및 도출 타당성에 대한 검증이 중요하다. 이러한 기계 학습 알고리즘의 결과 설명력 한계를 극복하기 위하여 유전 프로그래밍을 활용한 제조 빅데이터 분석 방법을 제안한다. 본 알고리즘은 생물학적 진화유전 프로그래밍 알고리즘은 생물학적 진화를 모방한 진화 연산 (선택, 교배, 돌연변이) 반복하면서 최적의 해를 찾아간다. 그리고 해는 수학적 기호를 활용하여 변수 간의 관계로 나타나며, 가장 높은 설명력을 가지는 해가 최종적으로 선택된다. 이를 통하여 입력 및 출력 변수 관계 수식화를 통한 결과를 도출하므로 직관적인 제조 매카니즘에 대한 해석이 가능하며 또한 수식으로 나타낸 변수간의 관계 기반으로 기존 해석이 불가한 제조 원리 도출도 가능하다. 제안 기법은 대표적인 기계 학습 알고리즘과 성능을 비교 분석 결과 동등 또는 우수한 성능을 보였다. 향후 해당 기법을 통하여 다양한 제조 분야 활용 가능성을 검증하였다.

BiLSTM 기반의 설명 가능한 태양광 발전량 예측 기법 (Explainable Photovoltaic Power Forecasting Scheme Using BiLSTM)

  • 박성우;정승민;문재욱;황인준
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권8호
    • /
    • pp.339-346
    • /
    • 2022
  • 최근 화석연료의 무분별한 사용으로 인한 자원고갈 문제 및 기후변화 문제 등이 심각해짐에 따라 화석연료를 대체할 수 있는 신재생에너지에 대한 관심이 증가하고 있다. 특히 신재생에너지 중 태양광 에너지는 다른 신재생에너지원에 비해 고갈될 염려가 적고, 공간적인 제약이 크지 않아 전국적으로 수요가 증가하고 있다. 태양광 발전 시스템에서 생산된 전력을 효율적으로 사용하기 위해서는 보다 정확한 태양광 발전량 예측 모델이 필요하다. 이를 위하여 다양한 기계학습 및 심층학습 기반의 태양광 발전량 예측 모델이 제안되었지만, 심층학습 기반의 예측 모델은 모델 내부에서 일어나는 의사결정 과정을 해석하기가 어렵다는 단점을 보유하고 있다. 이러한 문제를 해결하기 위하여 설명 가능한 인공지능 기술이 많은 주목을 받고 있다. 설명 가능한 인공지능 기술을 통하여 예측 모델의 결과 도출 과정을 해석할 수 있다면 모델의 신뢰성을 확보할 수 있을 뿐만 아니라 해석된 도출 결과를 바탕으로 모델을 개선하여 성능 향상을 기대할 수도 있다. 이에 본 논문에서는 BiLSTM(Bidirectional Long Short-Term Memory)을 사용하여 모델을 구성하고, 모델에서 어떻게 예측값이 도출되었는지를 SHAP(SHapley Additive exPlanations)을 통하여 설명하는 설명 가능한 태양광 발전량 예측 기법을 제안한다.

호우 영향예보를 위한 머신러닝 기반의 수문학적 정량강우예측(HQPF) 연구 (A Study on the Hydrological Quantitative Precipitation Forecast(HQPF) based on Machine Learning for Rainfall Impact Forecasting)

  • 추경수;신윤후;김성민;지용근;이영미;강동호;김병식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.63-63
    • /
    • 2022
  • 기상 예보자료는 발생 가능한 재난의 예방 및 대비 차원에서 매우 중요한 자료로 활용되고 있다. 우리나라 기상청에서는 동네예보를 통해 5km 공간해상도의 1시간 간격 초단기예보와, 6시간 간격 정량강우예보(Quantitative Precipitation Forecast, QPF)의 단기예보 정보를 제공하고 있다. 그러나 이와 같은 예보자료는 강우량의 시·공간변화가 큰 집중호우와 같은 기상자료를 활용한 수문학적인 해석에는 한계가 있다. 예보자료를 수문학에 활용하기 위한 시·공간적 해상도 개선뿐만 아니라 방대한 기상 및 기후 자료의 예측성능을 개선하기 위한 다양한 연구가 진행되고 있다. 본 연구에서는 기상청이 제공하는 지역 앙상블 예측 시스템(Local ENsemble prediction System, LENS)와 종관기상관측시스템(ASOS) 및 방재기상관측시스템(AWS) 관측 데이터 및 동네예보에 기계학습 방법을 적용하여 수문학적 정량적 강수량 예측(Hydrological Quantitative Precipitation Forecast, HQPF) 정보를 생산하였다. 전처리 과정을 통해 모든 데이터의 시간해상도와 공간해상도를 동일한 해상도로 변환하였으며, 예측 변수의 인자 분석을 통해 기계학습의 예측 변수를 도출하였다. 기계학습 방법으로는 처리속도와 확장성을 고려하여 XGBoost(eXtreme Gradient Boosting) 방식을 적용하였으며, 집중호우에서의 예측정확도를 높이기 위해 확률매칭(PM) 방식을 적용하였다. 생산된 HQPF의 성능을 평가하기 위해 2020년에 발생한 14건의 호우 사상을 대상으로 태풍형과 비태풍형으로 구분하여 검증을 수행하였다.

  • PDF

SHAP을 이용한 설명 가능한 신용카드 연체 예측 (Explainable Credit Default Prediction Using SHAP)

  • 김민중;김승우;문지훈
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.39-40
    • /
    • 2024
  • 본 연구는 SHAP(SHapley Additive exPlanations)을 활용하여 신용카드 사용자의 연체 가능성을 예측하는 기계학습 모델의 해석 가능성을 강화하는 방법을 제안한다. 대규모 신용카드 데이터를 분석하여, 고객의 나이, 성별, 결혼 상태, 결제 이력 등이 연체 발생에 미치는 영향을 명확히 하는 것을 목표로 한다. 본 연구를 토대로 금융기관은 더 정확한 위험 관리를 수행하고, 고객에게 맞춤형 서비스를 제공할 수 있는 기반을 마련할 수 있다.

  • PDF

기계학습을 활용한 데이터 기반 경찰신고건수 예측 (The Data-based Prediction of Police Calls Using Machine Learning)

  • 최재훈
    • 한국빅데이터학회지
    • /
    • 제3권2호
    • /
    • pp.101-112
    • /
    • 2018
  • 본 연구는 기계학습의 하나인 신경망 분석과 음이항 회귀분석을 활용하여 경찰신고건수를 예측하고자 2016년 6월부터 2017년 5월까지 충남지방경찰청에 접수된 112신고 데이터를 이용하여 예측모델을 개발하였다. 모델을 개발하기 위해 경찰신고건수에 영향을 줄 수 있는 시간, 휴일, 휴일 전날, 계절, 기온, 강수량, 풍속, 관할면적, 인구, 외국인 수, 단독주택비율, 기타주택비율 변수 등을 활용하였다. 변수의 종류에 따라 몇몇은 경찰신고건수와 양의 상관관계 또는 음의 상관관계가 확인되었다. 사용된 두 개의 방법론을 비교한바, 신경망분석의 예측 결과는 예측 값과 실제 값의 상관계수 0.7702, RMSE 2.557이고, 음이항 회귀분석은 상관계수 0.7158, RMSE 2.831으로 나타났다. 신경망분석은 해석가능성은 낮지만, 음이항 회귀분석에 비해 예측력이 뛰어나다는 것이 확인되었다. 향후 경찰관서에서 본 연구의 예측모델을 기초로 하여 최적의 경찰력 배치를 할 수 있을 것으로 기대된다.

대량의 프로테옴 데이타를 효과적으로 해석하기 위한 기계학습 기반 시스템 (An Effective Data Analysis System for Improving Throughput of Shotgun Proteomic Data based on Machine Learning)

  • 나승진;백은옥
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권10호
    • /
    • pp.889-899
    • /
    • 2007
  • 최근 프로테오믹스 분야에서 단백질의 추출, 분리기술의 발전과 고성능 질량분석 장비로 인하여 대량으로, 또 빠르게 샘플을 분석하는 것이 가능해짐에 따라서, 한번의 실험으로부터 얻어지는 실험데이타의 양이 대폭 늘어나게 되었다. 따라서 대량의 데이타를 어떻게 처리하여 필요한 정보만을 얻어내는가가 큰 이슈가 되고 있다. 하지만 기존의 데이타 해석과정은 불필요하게 계산자원을 낭비하는 요소를 상당 부분을 포함하고 있고, 이로 인해 데이타 해석 시간이 증가함은 물론, 종종 옳지 않은 해석 결과를 생성함으로써 결과에 대한 신뢰도의 저하를 초래했다. 본 논문에서는 기존의 데이타 해석 과정에서의 문제점을 지적하고, 데이타 처리의 효율을 높임과 동시에 해석 결과의 신뢰도를 제고하기 위한 SIFTER 시스템을 제안한다. SIFTER 시스템은 본격적인 데이타 해석에 앞서, 질량 스펙트럼의 질을 평가하고 하전량을 결정하는 소프트웨어를 제공한다. 탠덤 질량 스펙트럼에 나타나는 단편 이온의 특성을 고려하여 스펙트럼의 질과 하전량을 정확하게 결정하는 방법을 제공함으로써, 데이타 해석에 앞서 스펙트럼의 질이 낮아 해석이 불가능할 것이 분명한 경우 이들을 미리 제거하고 스펙트럼 해석과정에 잘못된 정보가 사용되지 않도록 한다. 결과적으로 데이타 해석과정에서의 효율과 해석결과의 정확성에 있어 대폭적인 개선을 기대할 수 있다.