• Title/Summary/Keyword: 해상풍력에너지

Search Result 253, Processing Time 0.02 seconds

A Study on the Sensitivity Analysis of Offshore wind farm Design (해상풍력발전 단지배치에 따른 민감도 분석에 관한 연구)

  • Kim, Do-Hyung;Jang, Eun-young;Kyong, Nam-Ho;Kim, Hong-Woo;Kim, Sung-Hwan;Kim, Chang-Suk
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.29-35
    • /
    • 2011
  • This study draws economic expense factors according to the influence of generation resulted from slipstream and the arrangement of the complex when arranging and designing the complex for offshore windpower development as a model of 50MW offshore wind farm and conducts economics analysis. According to the result of the analysis, O (Optimize) arrangement was the one that has the highest generation for having the best windpower resources in terms of design and being least affected by slipstream; however, the arrangement requires expensive submarine cables and high installation cost. Therefore, according to the analysis of economics, it was thought that 50MW complex should have less economics as BC ratio 0.95 than the series arrangement of main wind direction and I+80 series arrangement would be rather more economical. This economics evaluation provides comparison according to the arrangement of the development complex considering the uncertainty of the electricity price and gross construction cost. And it is expected that the result of economics evaluation would greatly differ by installation capacity, and the reason is that the cost of electric infrastructure takes up a higher portion than the gross construction cost of the development complex. The only way to compensate this part is to make the windpower development complex larger. It seems that it will be necessary to enhance spot applicability to evaluate economics afterwards and pay consistent attention to and conduct follow-up research on the economics evaluation of the complex construction.

A Study on the Optimal Site Selection by Constraint Mapping and Park Optimization for Offshore Wind Farm in the Southwest Coastal Area (서남해 연안 해상풍력 발전단지 지리적 적합지 선정 및 최적배치에 관한 연구)

  • Jung-Ho, Kim;Geon-Hwa, Ryu;Hong-Chul, Son;Young-Gon, Kim;Chae-Joo, Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1145-1156
    • /
    • 2022
  • In order to effectively secure site suitability for the development of large-scale offshore wind farms, it is essential to minimize the environmental impact of development and analyze the conflicts of benefit between social, ecological, and economic core values. In addition, a preliminary review of site adequacy must be preceded in order not to collide with other used areas in the marine spatial plan. In addition, it is necessary to conduct local meteorological characteristics analysis including wind resources near Jeollanam-do area before project feasibility study. Therefore, wind resource analysis was performed using the observation data of the meteorological mast installed in Wangdeungnyeo near Anmado, Yeonggwang, and the optimal site was selected after excluding geographical constraints related to the location of the offshore wind farm. In addition, the annual energy production was calculated by deriving the optimal wind farm arrangement results suitable for the local wind resources characteristics based on WindSim SW, and it is intended to be used as basic research data for site discovery and selection of suitable sites for future offshore wind farm projects.

Implementation of Small-Scale Wind Turbine Monitoring and Control System Based on Wireless Sensor Network (무선 센서 네트워크 기반 소규모 풍력발전기 모니터링 및 제어 시스템 구현)

  • Kim, Do-Young;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1808-1818
    • /
    • 2015
  • Recently, the wind power has experienced great attentions and growths among many renewable energy sources. To increase the power generation performance and economic feasibility, the size of wind turbine (WT) is getting bigger and most of wind power plants are being constructed on offshore. Therefore, the maintenance cost is relatively high because boats or helicopters are needed operators to reach the WT. In order to combat this kind of problem, remote monitoring and control system for the WT is needed. In this paper, the small-scale WT monitoring and control system is implemented using wireless sensor network technologies. To do this, sensor devices are installed to measure and send the WT status and control device is installed to receive control message for specific operation. The WT is managed by control center through graphic user interface (GUI) based monitoring and control software. Also, smart device based web-program is implemented to make the remote monitoring of the WT possible even though operators are not in control room.

Institutional Solution to Complex Conflicts in the Site Selection Process of Offshore Wind Power - from a Multi-level Governance Perspective (해상풍력 입지 선정 과정에서 복합적 갈등의 제도적 해결방안 - 다층적 거버넌스 관점에서)

  • Seunghyeok Ahn;Yoonmie Soh;Hojae Ryu;Minho Han;Sun-Jin Yun
    • New & Renewable Energy
    • /
    • v.19 no.2
    • /
    • pp.40-58
    • /
    • 2023
  • Several offshore wind power conflicts occur due to the problems in which the site selection process led by private operators is improperly managed. To review the institutional improvement measures that solve this problem, domestic and foreign institutions and operational cases were comparatively analyzed, focusing on key actors from the multi-level governance perspective. First, the status of the site selection process in the Republic of Korea, major issues in stakeholder conflicts, and discussions on the planned site system-related laws (draft) were reviewed. Next, the site selection process and relevant cases in Germany, the Netherlands, and Japan were analyzed. In all these countries, site selection is done by the central government. In Germany and the Netherlands, maritime-related ministries establish overall offshore wind power site plans and conduct strategic environmental assessments for these plans. Futhermore, in the process of determining each individual site, extensive site investigation including environmental assessments are conducted. This aspect needs to be supplemented in the discussion on the direction of institutional improvement in the Republic of Korea.

A Suggestion for Offshore Wind Industry Ecosystem Analysis: The Necessity of Analyzing the Transaction Network Based on the Special Classification of the Renewable Energy Industry (해상풍력 산업생태계 분석을 위한 제언: 신재생에너지산업 특수분류 기반 기업 간 거래네트워크 분석의 필요성)

  • Sanghyuk Lee;Jaepil Park
    • Journal of Wind Energy
    • /
    • v.13 no.4
    • /
    • pp.58-69
    • /
    • 2022
  • This study reviews previous studies on the scale of offshore wind power industry ecosystems to provide basic data for a revitalization strategy for the offshore wind power industry and proposes an analysis of transaction networks based on the special classification of the renewable energy industry. First, we examine the localization rate, technology level, and price level of the offshore wind industry. Second, this research compares the methodology and estimation results of previous studies estimating the scale of the wind power industry. Third, we examine the details related to the enactment of a special classification of the renewable energy industry statistics and review the Korea Energy Agency's renewable energy industry statistics (focusing on 2019 and 2020). Finally, this study suggests the necessity of analyzing an inter-company transaction network based on special classifications of the renewable energy industry to grasp the status of each region and value chain of the offshore wind industry.

Method for Determining Thickness of Rubber Fenders of a Tripod Type Offshore Wind Turbine Substructure (해상풍력 삼각지주형 하부구조물의 충격손상방지용 고무펜더의 두께결정 방법)

  • Lee, Kang-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.490-496
    • /
    • 2012
  • The main object of this research is to minimize the shock effects which frequently result in fatal damage in offshore wind turbine on impact of barge. The collision between offshore wind turbine and barge is generally a complex problem and it is often impractical to perform rigorous finite element analyses to include all effects and sequences during the collision. On applying the impact force of a barge to the offshore wind turbine, the maximum acceleration, internal energy, and plastic strain are calculated for each load case using the finite element method. A parametric study is conducted with the experimental data in terms of the velocity of barge, thickness of the offshore wind turbine, and thickness and Mooney-Rivlin coefficient of the rubber fender. Through the analysis proposed in this study, it is possible to determine the proper size and material properties of the rubber fender and the optimal moving conditions of barge.

Collision Behavior Comparison of Offshore Wind Tower as Type of Support Structure (지지구조의 형식에 따른 해상풍력타워의 선박충돌거동비교)

  • Lee, Gye-Hee;Kwag, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.93-100
    • /
    • 2022
  • The collision behaviors of the tripod and jacket structures, which are considered as support structures for offshore wind towers at the Southwest sea of Korea, were compared by nonlinear dynamic analysis. These structures, designed for the 3 MW capacity of the wind towers, were modeled using shell elements with nonlinear behaviors, and the tower structure including the nacelle, was modeled by beam and mass elements with elastic materials. The mass of the tripod structure was approximately 1.66 times that of the jacket structure. A barge and commercial ship were modeled as the collision vessel. To consider the tidal conditions in the region, the collision levels were varied from -3.5 m to 3.5 m of the mean sea level. In addition, the collision behaviors were evaluated as increasing the minimum collision energy at the collision speed (=2.6 m/s) of each vessel by four times, respectively. Accordingly, the plastic energy dissipation ratios of the vessel were increased as the stiffness of collision region. The deformations in the wind tower occurred from vibration to collapse of conditions. The tripod structure demonstrated more collision resistance than the jacket structure. This is considered to be due to the concentrated centralized rigidity and amount of steel utilized.

Development of Foundation Structure for 8MW Offshore Wind Turbine on Soft Clay Layer (점토층 지반에 설치 가능한 8MW급 해상풍력발전기 하부구조물 개발)

  • Seo, Kwang-Cheol;Choi, Ju-Seok;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.394-401
    • /
    • 2021
  • The construction of new renewable energy facilities is steadily increasing every year. In particular, the offshore wind farm market, which has abundant development scalability and a high production coefficient, is growing rapidly. The southwest sea has the highest possible offshore wind power potential, and related projects are to be promoted. This study presents a basic design procedure by the EUROCODE and considers structural safety in the development of an effective of shore wind foundation in the clay layer. In a previous study, the wind power generator of 5MW class was the main target, but the 8MW of wind turbine generator, which meets the technical trend of the wind turbine market in the Southwest sea, was selected as the standard model. Furthermore, a foundation that fulfills the geological conditions of the Southwest sea was developed. The structural safety of this foundation was verified using finite element method. Moreover, structural safety was secured by proper reinforcement from the initial design. Based on the results of this study, structural safety check for various types of foundations is possible in the future. Additionally, specialized structural design and evaluation guidance were also established.

Seismic Analysis for Multi-pile Concrete Foundation in 5MW Class Offshore Wind Turbine (5MW 해상풍력타워를 위한 콘크리트 지지구조물의 내진해석)

  • Kim, Woo Seok;Jeong, Yuseok;Kim, Kidu;Kim, Kyeong Jin;Lee, Jae Ha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.209-218
    • /
    • 2016
  • Recently, Wind-turbine electronic generator become popular. Wind-Turbine is free to cost for purchase and noise problem. For this reason, trend is shifting from Wind-turbine on land to offshore. Research and Development for offshore Wind-turbine has been conducted by various research institution. However, There is no solid design code for offshore Wind-turbine even in domestic as well as foreign. In this paper, conduct seismic analysis and compare results using design codes Korea Bridge Design Codes, Korea Harbor and Marina Design Codes, and DNV OS. Time-History analysis conducted for checking time dependent effect. The Added-Mass Method applied to consider water-structure effects and compared for w/ water and w/o water condition.