• Title/Summary/Keyword: 해빈

Search Result 251, Processing Time 0.021 seconds

Analysis of Ground Watertable Fluctuation at the Sandy Barrier Island on Jinu-do in Nakdong River Estuary (낙동강 하구역 진우도 자연해빈의 지하수위 변동해석)

  • Park, Jung-Hyun;Yoon, Han-Sam;Lee, In-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.4
    • /
    • pp.382-388
    • /
    • 2014
  • This study selected five observational stations in the normal direction of Jinu-do(island) shoreline and observed water temperature, electrical conductivity and pressure from March, 2012 to January, 2013(about 11 months) and attempted to see the variation characteristics of ground watertable. This study wants to know : 1) External environment force factors(tide, climate, wave etc.) affecting ground watertable variation through time series and correlation analysis. 2) Spatial variations of ground watertable and electrical conductivity change by storm event. First, we found that the station at the intertidal zone was strongly affected by wave and tide level and the stations at sand dune and vegetation zone was affected by precipitation and tide level through time series data and correlation analysis. Second, during the storm event, we found that ground watertable and electrical conductivity are stabilized at the start line of sand dune and vegetation zone and transition zone between freshwater layer and seawater layer exists in the experiment area and is about 50~70 m from coastline of the south side of Jinu-do(island).

Late Quaternary Transgressive Stratigraphy and its Depositional History in the Southeastern Continental Shelf, Korea (한국 남동해역 대륙붕 후 제4기 해침퇴적층서 및 퇴적역사)

  • Yoo, Dong-Geun;Lee, Chi-Won;Kim, Seong-Pil;Park, Soo-Chul
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.349-356
    • /
    • 2010
  • Analysis of high-resolution seismic profiles acquired from the southeastern continental shelf of Korea reveals that the late Quaternary transgressive deposits consist of six seismic units created in response to sea-level rise. These units with different seismic facies and geometry can be grouped into two distinct depositional wedges (paralic and marine) bounded by a ravinement surface. The paralic component underlying the ravinement surface consists of the sediment preserved from shoreface erosion and contains incised-channel fill, ancient beach-shoreface deposit and estuarine deposit. The top of paralic unit is truncated by a ravinement surface and overlain by marine component. The marine component consists of the sediment produced through shoreface erosion during landward transgression and contains mid-shelf sand sheet, mid-shelf sand ridge and inner shelf sand sheet. Such transgressive stratigraphic architecture of six sedimentary units is controlled by a function of lateral changes in the balance among rates of relative sea-level rise, sediment input and marine processes at any given time.

Textural Characters of the Sediments from Neolithic site Moonamni Coastal Zone, East Sea of Korea -Implication of the Holocene High Stand Sea Level (강원도 동해안 문암리 신석기 유적지 퇴적층의 조직 특성)

  • 박용안;김수정;최진용
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.1
    • /
    • pp.27-37
    • /
    • 2003
  • The Neolithic relics containing sedimentary deposits have been found in the Moonamni coastal zone of the East Sea, Korea. The purpose of this research is to establish the late Quaternary stratigraphy of the coastal dune deposit and to elucidate its depositional environment of the Neolithic-site sediments on the basis of analytical properties of grain size population and mineralogy of the sediments. As a result, the vertical sections of the sediments from three trenches are characterized by three major stratigraphic depositional units of Unit 3, Unit 2 and Unit 1 in ascending order. Unit 3 and 2 can be further divided into tow sub-units. Unit 3 is composed of massive sands in the lower part and muddy sand in the upper part. It is considered that the Unit 3 is a typical dune deposit showing well-sorted sands. Unit 2 is characterized by the cross-bedding, and include archaeological remains such as pottery shards. This unit can be further divided into two sub-units of muddy sand in the lower part and sand in the upper part. Unit 1 occupies the top section and consists of modem dune sediment. The Neolithic cultural remains would be accumulated in the coastal dune area in relation to dynamic condition of beach system under the high stand of Holocene sea-level at about 7,800∼6,500 yr B.P. or so.

  • PDF

Numerical Analysis of the Hydraulic Characteristics of a Boundary Layer Streaming over Beach Cusps Surf-Zone Using LES and One Equation Dynamic Smagorinsky Turbulence Model (LES와 One Equation Dynamic Smagorinsky 난류모형을 이용한 Beach Cusps 쇄파역에서의 경계층 Streaming 수치해석)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.55-68
    • /
    • 2020
  • In order to investigate the hydraulic characteristics of a boundary layer streaming over the beach cusps appeared in swells prevailing mild seas, we numerically simulated the shoaling process of Edge waves over the beach cusp. Synchronous Edge waves known to sustain the beach cusps could successfully be duplicated by generating two obliquely colliding Edge waves in front of beach cusps. The amplitude AB and length LB of Beach Cusp were elected to be 1.25 m and 18 m, respectively based on the measured data along the Mang-Bang beach. Numerical results show that boundary layer streaming was formed at every phase of shoaling process without exception, and the maximum boundary layer streaming was observed to occur at the crest of sand bar. In RUN 1 where the shortest waves were deployed, the maximum boundary layer streaming was observed to be around 0.32 m/s, which far exceeds the amplitude of free stream by two times. It is also noted that the maximum boundary layer streaming mentioned above greatly differs from the analytical solution by Longuet-Higgins (1957) based on wave Reynolds stress. In doing so, we also identify the recovery procedure of natural beaches in swells prevailing mild seas, which can be summarized such as: as the infra-gravity waves formed in swells by the resonance wave-wave interaction arrives near the breaking line, the sediments ascending near the free surface by the Phase II waves orbital motion were carried toward the pinnacle of foreshore by the shoreward flow commenced at the steep front of breaking waves, and were deposited near the pinnacle of foreshore due to the infiltration.

Erosion and Recovery of Coastal Dunes after Tropical Storms (태풍의 통과로 인한 해안사구 지형의 침식과 회복)

  • Choi, Kwang Hee;Jung, Pil Mo;Kim, Yoonmi;Suh, Min Hwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.1
    • /
    • pp.17-27
    • /
    • 2012
  • Coastal dunes help stabilize the coastal landscape and protect the hinterland through dynamic interaction with sand beaches. Sometimes dune erosion occurs during the tropical cyclones, while dune recovery may naturally follow after the event. As the typhoon Kompasu passed through the Korean Peninsula early-September in 2010, it caused a rise in water in association with the storm, wave run-ups, and heavy rains in coastal areas. As the result, coastal dunes along the west coast of Korea were severely damaged during the storm. However, the degree and extent of erosion and recovery of dunes were found to be related with the condition of beach-dune systems including gradients of foreshore and front slope of the dune, sediment supply, vegetation, wind activity, and human interferences. Some dunes retreated landward more and more after the erosional event, while others recovered its original profile by aeolian transport processes mainly during the winter season. Vegetated dunes with pine trees were less recovered after the erosion than grass-covered dunes. In addition, dunes with artificial defense were more eroded and less recovered than those without hard constructions. According to the observation after the severe storm, it is likely that the sand transport process is critical to the dune recovery. Therefore, the interactions between beach and dune must be properly evaluated from a geomorphological perspective for the effective management of coastal dunes, including natural recovery after the erosion by storm events.

Analysis of Sedimentation and Erosion Environment Change around the Halmi-island, Anmyeondo in West Coast of Korea (안면도 할미섬 주변의 침식·퇴적환경 변화 분석)

  • KIM, Jang-soo;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.2
    • /
    • pp.123-132
    • /
    • 2012
  • In this study, we analyzed sedimentation and erosion environment around Halmiseom on Anmyeon Island using wind direction and wind speed data, gain size analysis data and datum-point measured values. To observe changes in sedimentation and erosion environment around Halmiseon, we installed datum points at 12 locations around Halmiseom and carried out at total of 32 field measurements from May 16th, 2010 to May 8th, 2012. The field measurement results showed that H-3, H-4, H-5 and H-9 points are dominated by sedimentation environment, and H-7, H-8, H-10, H-11 and H-12 points are dominated by erosion environment. Meanwhile, sedimentation and erosion appeared alternately at H-2 and H-6 points. These results indicate that a bank installed in the southwest side of Halmiseom prevented sand of the beach from moving to the northeast side, leaving the sand of the beach being deposited at the sites, and the northeast side, where sand was not provided from beach ridge of Halmiseon was dominated by sedimentation. That is, the southwest side of Halmiseom was dominated by sedimentation, but the northeast side was dominated by erosion in general. However, the opposite trends were observed at H-9 point of the northeast side and H-12 point of the southwest side. According to analysis, since H-9 point is located at the end of sand spit connected to Halmiseom, the supply of sediments by a tidal current is possible. On the other hand, it was difficult to analyze the cause of erosion in case of H-12 point located at the sand dune due to the short measurement period.

Topographic Variability during Typhoon Events in Udo Rhodoliths Beach, Jeju Island, South Korea (제주 우도 홍조단괴해빈의 태풍 시기 지형변화)

  • Yoon, Woo-Seok;Yoon, Seok-Hoon;Moon, Jae-Hong;Hong, Ji-Seok
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.307-320
    • /
    • 2021
  • Udo Rhodolith Beach is a small-scale, mixed sand-and-gravel beach embayed on the N-S trending rocky coast of Udo, Jeju Island, South Korea. This study analyzes the short-term topographic changes of the beach during the extreme storm conditions of four typhoons from 2016 to 2020: Chaba (2016), Soulik (2018), Lingling (2019), and Maysak (2020). The analysis uses the topographic data of terrestrial LiDAR scanning and drone photogrammetry, aided by weather and oceanographic datasets of wind, wave, current and tide. The analysis suggests two contrasting features of alongshore topographic change depending on the typhoon pathway, although the intensity and duration of the storm conditions differed in each case. During the Soulik and Lingling events, which moved northward following the western sea of the Jeju Island, the northern part of the beach accreted while the southern part eroded. In contrast, the Chaba and Maysak events passed over the eastern sea of Jeju Island. The central part of the beach was then significantly eroded while sediments accumulated mainly at the northern and southern ends of the beach. Based on the wave and current measurements in the nearshore zone and computer simulations of the wave field, it was inferred that the observed topographic change of the beach after the storm events is related to the directions of the wind-driven current and wave propagation in the nearshore zone. The dominant direction of water movement was southeastward and northeastward when the typhoon pathway lay to the east or west of Jeju Island, respectively. As these enhanced waves and currents approached obliquely to the N-S trending coastline, the beach sediments were reworked and transported southward or northward mainly by longshore currents, which likely acts as a major control mechanism regarding alongshore topographic change with respect to Udo Rhodolith Beach. In contrast to the topographic change, the subaerial volume of the beach overall increased after all storms except for Maysak. The volume increase was attributed to the enhanced transport of onshore sediment under the combined effect of storm-induced long periodic waves and a strong residual component of the near-bottom current. In the Maysak event, the raised sea level during the spring tide probably enhanced the backshore erosion by storm waves, eventually causing sediment loss to the inland area.

Variation Characteristics of Wave Field around Three-Dimensional Low-Crested Structure (3차원저천단구조물(LCS) 주변에서 파동장의 변동특성)

  • Lee, Jun Hyeong;Bae, Ju Hyun;An, Sung Wook;Lee, Kwang Ho;Kim, Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.180-198
    • /
    • 2019
  • In recent years, countries like Europe and Japan have been involved in many researches on the Low-Crested Structure (LCS) which is the method to protect beach erosion and it is regarded as an alternative to the submerged breakwaters, and compiled its results and released the design manual. In the past, studies on LCS have focused on two-dimensional wave transmission and calculating required weight of armor units, and these were mainly examined and discussed based on experiments. In this study, three-dimensional numerical analysis is performed on permeable LCS. The open-source CFD code olaFlow based on the Navier-Stokes momentum equations is applied to the numerical analysis, which is a strongly nonlinear analysis method that enables breaking and turbulence analysis. As a result, the distribution characteristics of the LCS such as water level, water flow, and turbulent kinetic energy were examined and discussed, then they were carefully compared and examined in the case of submerged breakwaters. The study results indicate that there is a difference between the flow patterns of longshore current near the shoreline, the spatial distribution of longshore and on-offshore directions of mean turbulent kinetic energy in case of submerged breakwaters and LCS. It is predicted that the difference in these results leads to the difference in sand movement.

Liquefaction Hazard Assessment according to Seismic Recurrence Intervals Using Simple Estimating Method in Busan City, Korea (간이평가법을 이용한 지진재현주기별 부산광역시 액상화 재해 평가)

  • Lim, Hyunjee;Jeong, Rae-yoon;Oh, Dongha;Kang, Hyejin;Son, Moon
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.589-602
    • /
    • 2020
  • As can be seen in many earthquakes, liquefaction causes differential settlement, which sometimes produces serious damages such as building destruction and ground subsidence. There are many possible active faults near the Busan city and the Yangsan, Dongrae, and Ilgwang faults among them pass through the city. The Busan city is also located within the influence of recent earthquakes, which occurred in the Gyeongju, Pohang, and Kumamoto (Japan). Along the wide fault valleys in the city, the Quaternary unconsolidated alluvial sediments are thickly accumulated, and the reclaimed lands with beach sediments are widely distributed in the coastal area. A large earthquake near or in the Busan city is thus expected to cause major damage due to liquefaction in urban areas. This study conducted an assessment of the liquefaction hazard according to seismic recurrence intervals across the Busan city. As a result, although there are slight differences in degree depending on seismic recurrence intervals, it is predicted that the liquefaction potential is very high in the areas of the Nakdonggang Estuary, Busan Bay, Suyeong Bay, and Songjeong Station. In addition, it is shown that the shorter the seismic recurrence interval, the greater difference the liquefaction potential depending on site periods.

Estimates on the Long-term Landform Changes Near Sinduri Beaches (신두리 해빈 장기해안지형변화 탐지 및 추정)

  • Yun, Konghyun;Lee, Chang Kyung;Kim, Gyung Soo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1315-1328
    • /
    • 2022
  • Sinduri beach is a typical sedimentary landform that forms sand dunes due to the influence of the northwest wind in winter. Due to the its large scale and well-developed nature, it has been recognized for conservation value and is currently designated as Natural Monument No. 431, and continuous monitoring is required in terms of the preservation of topographical values. In this study, aerial images, drone images, and drone-based LiDAR data during 36 years were used for long-term topographical change observation of the Sinduri coastal sand dunes located in Taean-gun, Chungcheongnam-do. To implement this, the amount of change in elevation and volume for each period was calculated by applying the difference of Digital Elevation Model (DEM) based on raster calculation using the numerical elevation model generated from the raw data. Also, the amount of change in volume based on probability was calculated using the error propagation law for the intrinsic error of each data source. As a result, it can be seen that from 1986 to 2022, deposition of 35,119 m3 occurred in region of interest A (area: 17,960 m2) and 54,954 m3 of deposition occurred in region of interest B (area: 17,686 m2).