• Title/Summary/Keyword: 해법학회

Search Result 1,861, Processing Time 0.023 seconds

A Model and Algorithm for Optimizing the Location of Transit Transfer Centers (대중교통 환승센터 입지선정 모형 연구)

  • Yoo, Gyeong-Sang
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.1
    • /
    • pp.125-133
    • /
    • 2012
  • This paper deals with the passenger transfer trips counted from smart bus-card data from Seoul transit network to understand the current operational condition of the system. Objective of this study is to relocate the location of the transit transfer centers. It delivers a bi-level programing model. The upper model is a linear 0-1 binary integer program having the objective of total travel cost minimization constrained by the number of transfer centers and the total construction budget. The lower model is an user equilibrium assignment model determining the passengers' route choice according to the transfer center locations. The proposed bi-level programming model was tested in an example network. The result showed that the proposed was able to find the optimal solution.

Analytical Study on the Slewing Dynamics of Hybrid Coordinate Systems (복합좌표계 시스템의 선회동역학에 관한 해석적 연구)

  • Suk, Jin-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.36-44
    • /
    • 2003
  • In this paper, an analytic solution method is proposed to overcome the numerical problems when the slewing dynamics of hybrid coordinate systems is investigated via time finite element analysis. It is shown that the dynamics of the hybrid coordinate systems is governed by the coupled dual differential equations for both slewing and structural modes. Structural modes are transformed into the time-based modal coordinates and analytic spatial propagation equations are derived for each space-dependent time mode. Slew angle history is obtained analytically by appropriate applications of the boundary conditions and structural propagation is re-calculated using the slew angle. Numerical examples are demonstrated to validate the proposed analytic method in comparison to the existing state transition matrix method.

Real Gas Speeds of Sound and Approximate Riemann Solver (실제 기체 음속과 근사 리만 해법)

  • Moon, Seong-Young;Han, Sang-Hoon;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • The definition of the speed of sound is reexamined since it is crucial in the numerical analysis of compressible real gas flows. The thermodynamic speed of sound (TSS), $a_{th}$, and the characteristic speed of sound (CSS), $a_{ch}$, are derived using generalized equation of state (EOS). It is found that the real gas EOS, for which pressure is not linearly dependent on density and temperature, results in slightly different TSS and CSS. in this formalism, Roe's approximate Riemann solver was derived again with corrections for real gases. The results show a little difference when the speeds of sound are applied to the Roe's scheme and Advection Upstream Splitting Method (AUSM) scheme, but a numerical instability is observed for a special case using AUSM scheme. It is considered reasonable to use of CSS for the mathematical consistency of the numerical schemes. The approach is applicable to multi-dimensional problems consistently.

Production of Hydrogen and Carbon Black Using Natural Gas Thermal Decomposition Method (천연가스 열분해법에 의한 수소 및 탄소 제조)

  • Jang, Hun;Lee, Byung Gwon;Lim, Jong Sung
    • Clean Technology
    • /
    • v.10 no.4
    • /
    • pp.203-213
    • /
    • 2004
  • Natural gas thermal decomposition method is the technology of converting natural gas (methane) into hydrogen and carbon at high temperature. The most advantage of thermal decomposition method is that hydrogen and carbon can be produced without emitting carbon dioxide. In this study, the generation of hydrogen and carbon was investigated by this natural gas (methane) thermal decomposition method. We found that pyrocarbon was created on the surface of reactor, carbon black was deposited on the pyrocarbon and final plugging phenomenon took place. To solve this problem, we tried several attempts such as introduction of double pipe reactor instead of single pipe reactor or oxidization of carbon black using $O_2$ or $CO_2$ at regular intervals of reaction. Therefore, some plugging phenomenon was resolved by this methods. Also, carbon particle size was measured by SEM (Scanning Electron Microscope) image and the size was about 200 nm.

  • PDF

comparison of Numercal Methods for Obtaining 2-D Impurity Profile in Semiconductor (반도체 내에서의 2차원 불순물 분포를 얻기 위한 수치해법의 비교)

  • Yang, Yeong-Il;Gyeong, Jong-Min;O, Hyeong-Cheol
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.3
    • /
    • pp.95-102
    • /
    • 1985
  • An efficient numerical scheme for assessing the two-dimensional diffusion problem for modelling impurity profile in semiconductor is described. 4 unique combination of ADI (Al-ternating Direction Bmplicit) method and Gauss Elimination has resulted in a reduction of CPU time for most diffusion processes by a factor of 3, compared to other iteration schemes such as SOR (Successive Over-Relaxation) or Stone's iterative method without additional storage re-quirement. Various numerical schemes were compared for 2-D as well as 1-0 diffusion profile in terms of their CPU time while retaining the magnitude of relative error within 0.001%. good agree-ment between 1-D and 2-D simulation profile as well as between 1-D simulation profile and experiment has been obtained.

  • PDF

A Study of Numerical Method for Analysis of the 3-Dimensional Nonlinear Wave-Making Problems (3차원 비선형 조파문제 해석을 위한 수치해법 연구)

  • Ha, Y.R.;An, N.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.40-46
    • /
    • 2012
  • For free surface flow problem, a high-order spectral/boundary element method is adapted as an efficient numerical tool. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated and hydrodynamic forces also can be calculated in time domain. In this method, the velocity potential is expressed as the sum of surface potential and body potential. Then, surface potential is solved by using the high-order spectral method and body potential is solved by using the high-order boundary element method. Using the combination of these two methods, the free surface flow problems of a submerged moving body are solved in time domain. In the present study, lifting surface theory is added to the former work to include effects of lift force. Therefore, a new formulation for the basic mathematical theory is introduced to contain the lift body in calculation.

Elasto-plastic Loading-unloading Nonlinear Analysis of Frames by Local Parameter Control (국부변수 조절을 통한 프레임의 탄소성 하중-제하 비선헝 해석)

  • 박문식
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.435-444
    • /
    • 2001
  • Even todays, accurate and efficient algorithms for the large deformation analysis of elastoplastic frame structures lack due to the complexities of kinematics, material nonlinearities and numerical methods to cater for. The author suggests appropriate beam element based upon the incremental formulation from the 3D rod theory where Cauchy stress and engineering strain are variables to incorporate plasticity equations so that objectivity may be satisfied. A rectum mapping methods which can integrate and satisfy yield criteria efficiently is suggested and a continuation method which has global convergency and quadratic speed is developed as well. leading-unloading example problems are tested and the ideas are proved to be valuable.

  • PDF

A Steady Method of Damping Coefficient Prediction for Axisymmetric Projectiles (축대칭 발사체의 감쇠계수 계산을 위한 정상 해법)

  • Park, Soo-Hyung;Kwon, Jang-Hyuk;Yu, Yung-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.1-8
    • /
    • 2006
  • A steady prediction method is presented to compute dynamic damping coefficients for axisymmetric projectiles. Viscous flow analysis is essential to the steady method using a zero-spin coning motion in the inertial coordinate frame. The present method is applied to compute the pitching moment and the pitch-damping moment coefficients for the Army-Navy Spinning Rocket. The results are in good agreement with the parabolized Navier-Stokes data, range data, and unsteady prediction data. Predictions for Secant-Ogive-Cylinder configurations are performed to investigate effects of afterbody geometries. To investigate the geometrical effect and flow physics, the longitudinal developments of the coefficients are examined in detail.

On an Implementation of a Hybrid Solver Based on Warren Abstract Machine and Finite Domain Constraint Programming Solver Structures (워렌 추상기계와 한정도메인 제약식프로그램의 구조를 이용한 혼합형 문제해결기 구현에 대한 탐색적 연구)

  • Kim Hak-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.2
    • /
    • pp.165-187
    • /
    • 2004
  • Constraint Programming in AS and Optimization in OR started and have grown in different backgrounds to solve common decision-making problems in real world. This paper tries to integrate results from those different fields by suggesting a hybrid solver as an integration framework. Starting with an integrating modeling language, a way to implement a hybrid solver will be discussed using Warren's abstract machine and an finite domain constraint programming solver structures. This paper will also propose some issues rising when implementing the hybrid solver and provide their solutions.

  • PDF

A Heuristic for the Realtime Ship Load Planning in Container Terminal (컨테이너 터미널에서 실시간 선적계획을 위한 발견적 해법)

  • Seo Kyung-Moo;Lee Jong-Ho;Shin Jae-Young
    • Journal of Navigation and Port Research
    • /
    • v.30 no.6 s.112
    • /
    • pp.491-498
    • /
    • 2006
  • In container terminals ship loading plan for efficient loading is made before the ship arrives. But after the ship arrives sometimes real loading state of the ship is different from planned loading state. Or sometimes the plan is not available. Hence ship loading plan must be adjusted immediately and that algorithm must be studied. In this study we organize the situations said before. And we present realtime ship loading plan method. The method is suitable for the situations, rational, and immediately able to use.