• Title/Summary/Keyword: 항타

Search Result 175, Processing Time 0.022 seconds

PHC 말뚝의 항타 시공성에 관한 연구

  • 이인모;김상균
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.06a
    • /
    • pp.1-13
    • /
    • 1992
  • 본 연구에서는 일반 PC 말뚝과는 달리 제작시 실리카(silica) 재료를 사용하고 중기양생후 고온,고압의 추가양생(autoclave curing)을 실시 함으로써 말뚝자체의 강성을 높인 PHC 말뚝의 항타 시공성을 컴퓨터 프로그램을 이용하여 파악하였다. 일반적으로 임의의 지반조건, 항타장비에 따른 컴퓨터 프로그램의 실행결과는 PHC 말뚝이 PC 말뚝에 비해 항타장비에 의해서 발휘되는 타격에너지에 대해 보다 큰 저항력을 가지므로 설계지지력을 크게 얻을 수 있으며 항타장비의 선정에 있어서도 보다 큰 효율을 지닌 장비의 선정이 가능하여 경제적인 항타작업을 수행하는데 유리함을 보였다. 이와같은 결과를 실제 현장에서의 말뚝 항타시공을 실시한 후 항타기록 및 재하시험 결과와 비교검토 하였는데 본 연구결과와 재하시험 결과가 잘 일치함을 보였다.

  • PDF

The Application of New Pile Driving Formulas (새로운 항타공식의 적용)

  • 조천환;이명환
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.5
    • /
    • pp.157-164
    • /
    • 2001
  • 말뚝의 항타공식(또는 동적공식)은 간단하고 품질관리를 수행할 수 있는 실용적인 방법으로 이용되어 왔지만 신뢰도는 가정조건의 문제점으로 인해 매우 낮은 것으로 평가되고 있다. 실제적으로 동적공식은 항타시스템 및 항타과정 측면에서 보면 근본적으로 문제가 있는데, 그간의 많은 연구들은 이러한 사실을 고려하지 않은 상태에서 이루어 졌다. 본 연구에서는 동적공식의 문제점에 대해 평가해 보고 이를 바탕으로 새로운 동적공식을 제안하였다. 그리고 현장에서 항타분석기로 실측된 항타시 및 항타후 시험자료를 이용하여 새로운 동적공식의 신뢰도와 적용성을 평가하였으며 그 결과 새로운 동적공식의 실용성을 확인할 수 있었다.

  • PDF

Feasibility Appraisal and Proposal of a Pile Driving Formula for Domestic Pre-bored Pile Management (국내 매입 말뚝 관리를 위한 항타공식 활용 가능성 평가 및 제안에 관한 연구)

  • Kim, Gunwoong;Seo, Seunghwan;Kim, Juhyong;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.71-84
    • /
    • 2023
  • In accordance with Korean structural foundation design standards, dynamic or static load tests are mandated for 1 to 3% of total piles. The construction quality of the remaining 97% to 99% of piles is determined through penetration measurements. This study aims to enhance the quality control of the majority of piles by adopting a pile driving formula that considers both penetration and hammer energy. The current challenge lies in adapting existing overseas driving formulas to the domestic site conditions, characterized by shallow weathered or soft rocks, and the prevalent use of pre-bored piles. To address this, the Modified Gates formula was refined using domestic dynamic load data, thereby improving its applicability to pile management. Despite employing fewer variables, the proposed formula demonstrates a comparable accuracy to dynamic loading tests in predicting the bearing capacity of pre-bored piles. Consequently, this formula holds promise for practical use in future pile quality management.

Measurement and Control of Ground Vibrations due to Precast Concrete Pile-driving by Diesel Hammer (디젤해머에 의한 콘크리트말뚝 항타시(抗打時) 발생(發生)되는 지반진동(地盤振動)의 측정(測定) 및 영향평가(影響評價))

  • Park, Yean Soo;Chon, Chun Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.71-78
    • /
    • 1989
  • This Paper measures and analyzes ground vibrations induced during precast concrete pile-driving using diesel hammer at radii varying from 9m to 30m to evaluate effects of such vibrations associated with deep foundation piling operations near the residential of commercial areas. From this study, characteristics for attenuation and frequency of the vibrations casued by pile-driving are established and the empirical equation for predicting peak velocity and acceleration levels are obtained. This equation can be used to predict the peak vibration levels and select the appropriate hammers for future projects where similar soil conditions to this test site are encountered.

  • PDF

Drivability and Bearing Capacity of PHC Pile Foundation (PHC 말뚝의 항타시공성 및 지지력에 관한 연구)

  • Lee, Myung Whan;Lee, In Mo;Kim, Sang Gyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.223-234
    • /
    • 1993
  • The main characteristics of PHC piles is that silica material and autoclave curing technique are used when manufacturing to have higher strength than PC piles. In this paper, pile drivability and bearing capacity characteristics of the PHC piles are studied through numerical analysis based on wave propagation theory, driving records and pile load tests in situ. It is found that we can have higher bearing capacity by using the PHC piles rather than the PC on condition that the most effective driving equipment is chosen when driving the pile. In other words, since the PHC piles have higher resistance to driving energy, the heavier ram can be used in the driving process, which results in the higher bearing capacity.

  • PDF

Effect of Pile Driving Energy on Steel Pipe Pile Capacity in Sands (모래지반에서 말뚝의 항타에너지가 강관말뚝의 지지력에 미치는 영향)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.99-110
    • /
    • 2001
  • Open-ended pipe piles are often used for the foundations of both land and offshore structures because of their relatively low driving resistance. In this study, load tests were performed on model pipe piles installed in calibration chamber samples in order to investigate the effects of pile installation method on soil plugging and bearing capacity. Results of the test program showed that the incremental filling ratio (IFR), which is used to indicate the degree of soil plugging in open-ended piles, decreased (i) with increasing hammer weight for the same driving energy and (ii) with increasing hammer weight at the same fall height. The base and shaft resistance of the piles were observed to increase (i) with increasing hammer weight for the same driving energy and (ii) with increasing hammer weight at the given same fa11 height. The jacked pile was found to be have higher bearing capacity than an identical driven pile under similar conditions, mostly due to the more effective development of a soil plug in jacking than in driving.

  • PDF

Prediction of Driving Stresses in Piles (항타응력 추정)

  • 진병익;황정규
    • Geotechnical Engineering
    • /
    • v.3 no.1
    • /
    • pp.25-38
    • /
    • 1987
  • The prediction of driving stresses in piles is necessary for optimum selection of driving hammers, better design of precast piles, enact assessment of drivabilities and complete description of piling specifications. However, the existing pile-driving formulas based on the theory of Newtonian impact have some defects and shortcomings; the numerical method by the wave equation analysis using electronic computer usually Involves various uncertainties and limitations which can yield erroneous outcomes because it employs soil constants of which the nature is unknown as essential parameters and ignores the effect of residual stresses set up in the pile .after each hammer blow; and the electronic measuring technique needs extra time and expense. The method developed herein is presented for the purpose of giving field engineers a reliable and convenient analytical procedure for the prediction of driving stresses along the full length of pile using the most effetive parameters without resort to electronic computer. This method is based on the fundamental mechanics of stress waves in elastic rods and takes into account the effect of residual stresses induced by reversed friction in piles.

  • PDF

A Study on the 3D Analysis of Driven Pile Penetration Based on Large Deformation Technique (Coupled Eulerian-Lagrangian) (대변형 해석기법(Coupled Eulerian-Lagrangian)을 이용한 항타 관입성 모사의 3차원 해석)

  • Ko, Jun-Young;Jeong, Sang-Seom;Lee, Seung-Yeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.8
    • /
    • pp.29-38
    • /
    • 2015
  • This paper presents the application of the Coupled Eulerian-Lagrangian (CEL) numerical technique to simulate the driving of open-ended piles into sandy soil. The main objective of this study was to investigate the applicability of CEL technique to the behavior of the driven pile penetration. Comprehensive studies to verify the behavior of driven pile penetration are presented in this paper. Through comparison with results of field load tests, the CEL methodology was found to be in good agreement with the general trend observed by in situ measurement, and the CEL approach accurately simulated the behavior of driven pipe piles.

Case Study of Friction Piles Driven into Clayey Soils on the Central Coast of Vietnam (베트남 중부 연안의 대심도 점토지반에 시공된 강관 마찰 말뚝의 항타시공관리)

  • Seol, Hoon-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.19-31
    • /
    • 2024
  • In Korea, driven piles are generally penetrated up to weathered rock or harder strata. Friction piles have been used to some extent in the southwest coastal area with deep soils; however, friction piles are not extensively due to uncertainties about construction quality. The embedded pile construction method is primarily used due to noise and vibration complaints. However, in Southeast Asian countries (e.g., Cambodia, Myanmar, and Vietnam), where soft sediments are deep, the driven pile method is commonly used due to its economic advantages. Construction companies are increasingly entering overseas construction markets, e.g., Southeast Asia; thus, it is necessary to understand the behavior of driven friction piles in the soil and improve on-site engineering management to gain market competitiveness in these countries. In this study, the bearing capacity of friction piles driven into clayey coastal soils in Vietnam with time-dependent characteristics was evaluated based on the dynamic and static pile load tests. Based on the results, a modified Danish formula is proposed for on-site quality management.