• Title/Summary/Keyword: 항진균

Search Result 388, Processing Time 0.021 seconds

Acute Toxicity of Crude Anti-fungal Compounds Produced by Lactobacillus plantarum AF1 (Lactobacillus plantarum AF1이 생성한 조항진균 물질의 마우스에 대한 급성독성)

  • Son, Hee-Kyoung;Lee, Myung-Yul;Chang, Hae-Choon;Lee, Jae-Joon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.6
    • /
    • pp.892-897
    • /
    • 2013
  • We investigated the acute toxicity from a single dose of crude anti-fungal compounds produced by Lactobacillus plantarum AF1, a lactic acid bacterium isolated from kimchi, on ICR male and female mice in vivo. The test article was orally administered once to both sexes of mice. The mortality rate, clinical findings, autopsy findings, and body weight changes were monitored daily for 14 days. In the oral acute toxicity test, male and female mice were gavaged with four doses (5, 50, 300 or 2,000 mg/kg) of the crude anti-fungal compounds. The oral $LD_{50}$ of the crude anti-fungal compounds was higher than 2,000 mg/kg. No significant changes in general conditions, body weights, clinical signs, or appearance of gross lesions were observed. In conclusion, our results suggest a low toxicity and no-adverse-effects from crude anti-fungal compounds produced by Lactobacillus plantarum AF1 up to 2,000 mg/kg via the oral route.

Correlation between Biosurfactants and Antifungal Activity of a Biocontrol Bacterium, Bacillus amyloliquefaciens LM11 (생물적 방제균 Bacillus amyloliquefaciens LM11의 유래 생물계면활성물질과 항균활성과의 상관관계)

  • Kang, Beom Ryong;Kim, Yong Hwan;Nam, Hyo Song;Kim, Young Cheol
    • Research in Plant Disease
    • /
    • v.23 no.2
    • /
    • pp.177-185
    • /
    • 2017
  • Bacillus amyloliquefaciens LM11 was isolated from the feces of larvae of the rhino beetle and showed strong antifungal activities against various phytopathogenic fungi by producing biosurfactants. In this study, our overall goal was to determine relationship between biosurfactants produced from the LM11 strain and its role in growth inhibition of phytopathogenic fungi. Production and expression levels of B. amyloliquefaciens LM11 biosurfactants were significantly differed depending on growth phases. Transcriptional and biochemical analysis indicated that the biosurfactants of the LM11 strain were greatly enhanced in late log-phase to stationary phase. Inhibitions of phytopathogenic mycelial growth and spore germination were directly correlated (P<0.001, R=0.761) with concentrations of the LM11 cell-free culture filtrates. The minimum inhibitory surface tension of the culture filtrate of the B. amyloliquefaciens LM11 grown in stationary phase to inhibit mycelial growth of the phytopathogenic fungi was 38.5 mN/m (P<0.001, R=0.951-0.977). Our results indicated that the biosurfactants of B. amyloliquefaciens LM11 act as key antifungal metabolites in biocontrol of plant diseases, and measuring surface tension of the cell-free culture fluids can be used as an easy indicator for optimal usage of the biocontrol agents.

Preparation and Characterizatino of Nano-sized Liposome Containing Proteins Derived from Coptidis rhizoma (황련유래 단백질이 함유된 나노리포좀의 제조 및 특성)

  • Oh, Seng Ryong;Lee, Sang Bong;Cho, Kye Min;Choi, Moon Jae;Jin, Byung Suk;Han, Yong Moon;Lee, Young Moo;Shim, Jin Kie
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.52-57
    • /
    • 2006
  • Coptidis Rhizoma, an antimicrobial agent from natural source, is known to have the antiviral effect on the Candida albicans that causes the infectious dermatitis. The valuable protein was extracted from the Coptidis Rhizoma, To prevent denaturalization from external stimulus and improve adsorption onto the skin, the nano-sized liposomes were prepared as a carrier. The CPR-containing liposomes showed an average diameter of 187 nm, surface charge of 3.337 mV and 33% encapsulation efficiency. The release behavior of CRP from the liposome was investigated with various temperature and releasing time. The PVA solution was coated on the surface of liposome to improve the stability. The coated liposome showed slow release behavior in comparison with the non-coated liposome. The CRP in the liposome maintained the effect on the Candida albicans after treating it at 50 and with ultraviolet for 24 h.

Purification and Characterization of Antibacterial Compound Produced by Bacillus subtilis MJP1 (Bacillus subtilis MJP1이 생산하는 항세균 물질의 분리.정제 및 특성규명)

  • Yim, Eun-Jung;Yang, Eun-Ju;Chang, Hae-Choon
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.1
    • /
    • pp.84-92
    • /
    • 2010
  • Antibacterial compound from Bacillus subtilis MJP1 was purified using C18 Sep-Pak cartridge, ion exchange chromatography, and gel filtration chromatography. The purified antibacterial compound showed antibacterial activity against Listeria monocytogenes, Bacillus subtilis, Staphylococcus aureus subsp. aureus, and Enterococcus faecalis. The purified antibacterial compound was found to be stable at $100^{\circ}C$ for 5 min and in the pH range of 3.0~9.0, but it was unstable at pH 10.0. It was inactivated by proteinase K and pronase E, and heat treatment at $121^{\circ}C$ for 15 min, but it was stable with lipase and $\alpha$-amylase treatment, which indicated its proteineous nature. Ultra performance liquid chromatography and electrospray ionization tandem mass spectrometry analysis were used to identify the purified antibacterial compound and confirmed the existence of two peptides (3356.54 Da, 3400.5244 Da).

Acute Toxicity of Lactobacillus plantarum AF1 Isolated from Kimchi in Mice (김치로부터 분리한 Lactobacillus plantarum AF1의 마우스에 대한 급성독성)

  • Lee, Hwan;Lee, Jae-Joon;Chang, Hae-Choon;Lee, Myung-Yul
    • Food Science and Preservation
    • /
    • v.19 no.2
    • /
    • pp.315-321
    • /
    • 2012
  • The $in$ $vivo$ single-dose acute toxicity of $Lactobacillus$ $plantarum$ AF1, a lactic acid bacterium isolated from kimchi, in ICR male and female mice was investigated. The test article was intraperitoneally or orally administered once to both sexes of mice. The motalites, clinical findings, autopsy findings, and body weight changes were monitored daily for 14 days. In the oral acute toxicity test, the male and female mice were gavaged with four doses (5.0, 2.5, 1.25 and 0.625 g/kg) of $Lb.$ $plantarum$ AF1. The oral $LD_{50}$ of the $Lb.$ $plantarum$ AF1 was considered higher than 5.0 g/kg. In the intraperitoneal acute toxicity test, mice were injected intraperitoneally with dosages of 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1, 2.3 and 2.5 g/kg. The intraperitoneal 50% lethal dose ($LD_{50}$) of the $Lb.$ $plantarum$ AF1 was >2.5 g/kg in the male and female mice. No significant changes in the general conditions, body weights, clinical signs, and gross lesions were observed in both sexes of mice to which $Lb.$ $plantarum$ AF1 was administered intraperitoneally or orally. The results suggest that the no-adverse-effect level of $Lb.$ $plantarum$ AF1 is estimated to be more than 5.0 g/kg in the oral route and 2.5 g/kg in the intraperitoneal route.

Inhibition of growth and toxin production of ochratoxigenic Aspergillus spp. by isolated bacteria (분리세균에 의한 ochratoxin 생성 Aspergillus spp.의 생장 및 독소생성 저해)

  • Hwang, Ji-Seon;Choi, Ho-Yeong;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.226-233
    • /
    • 2019
  • Ochratoxin A (OTA) that is one of mycotoxins produced mainly by Aspergillus spp. is a common contaminant of stored grains and poses health hazards to human and livestock. The aim of this study is to explore the ability of isolated bacteria Bacillus subtilis AF13 and Streptomyces shenzhenensis YR226 to inhibit growth and OTA production of 3 ochratoxigenic Aspergillus strains. The antifungal activity against mycelial growth and sporulation of Aspergillus strains was examined by coculture with AF13 and YR226 on potato dextrose agar plate. AF13 and YR226 reduced 77.58 and 78.48% of fungal colony radius, respectively, and both strains inhibited fungal sporulation up to 99% in 10 days of incubation. YR226 also reduced more than 91% of spore germination of 3 fungal strains. When Aspergillus strains were cocultured with AF13 or YR226 in yeast extract sucrose medium, mycelial growth and OTA production decreased in all three fungal strains. In particular, AF13 completely inhibited the mycelial growth of A. alutaceus and inhibited its OTA production by 99%, and YR226 also reduced mycelial growth and toxin production up to 99%, respectively. Antimicrobial substances produced by AF13 and YR226 included siderophore, chitinase, protease, ${\beta}$-1,3-glucanase and biosurfactant. These results suggest that AF13 and YR226 can be used in a biological method to prevent valuable crops against mycotoxigenic fungi, and therefore decrease economic damage in agriculture and feed industry.

The Roles of Lactic Acid Bacteria for Control of Fungal Growth and Mycotoxins (곰팡이 생육 및 곰팡이 독소 생산의 억제에 있어서의 유산균의 역할)

  • Kim, Jihoo;Lee, Heeseob
    • Journal of Life Science
    • /
    • v.30 no.12
    • /
    • pp.1128-1139
    • /
    • 2020
  • Over recent years, it has become evident that food and agricultural products are easily contaminated by fungi of Aspergillus, Fusarium, and Penicillium due to rapid climate change, which is not only a global food quality concern but also a serious health concern. Owing to consumers' interest in health, resistance to preservatives such as propionic acid and sorbic acid (which have been used in the past) is increasing, so it is necessary to develop a substitute from natural materials. In this review, the role of lactic acid bacteria as a biological method for controlling the growth and toxin production of fungi was examined. According to recent studies, lactic acid bacteria effectively inhibit the growth of fungi through various metabolites such as organic acids with low molecular weight, reuterin, proteinaceous compounds, hydroxy fatty acids, and phenol compounds. Lactic acid bacteria effectively reduced mycotoxin production by fungi via adsorption of mycotoxin with lactic acid bacteria cell surface components, degradation of fungal mycotoxin, and inhibition of mycotoxin production. Lactic acid bacteria could be regarded as a potential anti-fungal and anti-mycotoxigenic material in the prevention of fungal contamination of food and agricultural products because lactic acid bacteria produce various kinds of potent metabolic compounds with anti-fungal activities.

Determination of Antifungal Activity on Pepper Anthracnose and Plant Growth Promoting Activity of Pleurospermum camtschaticum Root Extract (누리대 뿌리 추출물의 고추 탄저병에 대한 항균 및 생장 촉진 활성 검정)

  • Inkyu Lee;Young Sun Baek;Youn Su Lee
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.268-275
    • /
    • 2023
  • This study was conducted to confirm the utilization of Pleurospermum camtschaticum root extract as an organic agricultural material. Antioxidant activity of P. camtschaticum root extract, closely related to antibacterial activity, increased in a dose-dependent manner. In mycelial growth inhibitory activity, 100% P. camtschaticum root extract supressed over 70% for Colletotrichum coccodes and over 68% for Colletotrichum dematium. In the pepper fruit anthracnose development test, the size of the lesion decreased in a dose-dependent manner, which showed the same tendency as the previous results in inhibitory activity on mycelial growth. In the pepper seed germination and red pepper growth promotion test of P. camtschaticum root extract, oposite results was confirmed. The lower the concentration, the more the seed germination and growth promotion effects were shown. The phenol content of pepper leaves was also measured after pepper growth promotion test have been completed. The phenol content related to antibacterial activity increased in all treated groups compared to the untreated group. Therefore, the results of this study showed the possibility of development as an organic material.

Physiological and Ecological Characteristics of Hemolytic Vibrios and Development of Sanitary Countermeasure of Raw Fisheries Foods 1. Isolation and Identification of Novel Pathogenic Vibrio sp. Producing Hemolysin (용혈독소를 생산하는 기수성 비브리오균의 생리${\cdot}$생태적 특성과 수산식품의 위생 대책 1. 용혈독소를 생산하는 새로운 병원성 Vibrio sp.의 분리와 동정)

  • KIM Young-Man;CHOI Gil-Bae;CHANG Dong-Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.3
    • /
    • pp.361-366
    • /
    • 1997
  • To determine the physiological, biochemical characteristics and toxicity of hemolysin produced by a novel sucrose positive Vibrio (Vibrio sp. D5) isolated from estuary of Kum river, it was compared with already known sucrose positive Vibrio. Salinity, pH, temperature and conductivity of place where Vibrio sp. D5 was isolated were $4.7\%_{\circ},\;7.6,\;24^{\circ}C$ and $7800{\mu}MHOS$, respectively. Physiological and biochemical characteristics distingiushed Vibrio sp. D5 from other sucrose positive Vibrio: V. alginoipicus, V. cholerae, V. cincinnatiensis, V. fluvialis, V. furnissii and V. metschnikovii. The range of salinity and pH for growth of Vibrio sp. D5 were $0.5\%\~7.5\%$ and $4.5\~9.5$, respectively. Vibrio sp. D5 exhibited typical yellow colony on TCBS agar plate and curved rod type upon transmission electron microscopy (TEM). Vibrio sp. D5 had lethal toxicity against mouse in case of intraperitoneal injection with its culture and showed hemolysin activity on human blood agar and sheep blood agar. Ubrio sp. D5 also demonstrated vascular permeability activity toward rat. From the above results, Vibrio sp. D5 was ascertained to be a novel pathogenic Vibrio.

  • PDF

Selection and Antagonistic Mechanism of Pseudomonas fluorescens 4059 Against Phytophthora Blight Disease (고추역병과 시들음병을 방제하는 토착길항세균 Pseudomonas fluorescens 4059의 선발과 길항기작)

  • Jeong, Hui-Gyeong;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.4
    • /
    • pp.312-316
    • /
    • 2004
  • In oder to select the powerful rhizophere-dorminatable biocontrol agent, we had isolated an indigenous antagonistic bacterium which produced antibiotic and siderophore from a disease suppressive local field soil of Gyungsan, Korea. And we could select the Pseudomosp. 4059 which can strongly antagonize against Fusarium oxysporum and Phytophthora capsici by two kinds of antifungal mechanism that can be caused by the antibiotic of Phenazin, a siderophore and a auxin like subThe selected strain was identified as Pseudomonas fluorescens (biotype A) 4059 by biochemical tests, API $\textregistered$ test, MicroLog TM system and 16S rDNA analysis. The selected antagonistic microorganism, Pseudomosp. 4059 had an antifungal mechanism of antifungal antibiotic and sidrophore. And we were confirmed the antagonistic activity of P fluorescens 4059 with in vitro antifungal test against Phytophthora capsici and in vivo by red-pepper.