• Title/Summary/Keyword: 항복기준

Search Result 289, Processing Time 0.025 seconds

Ductility Relationship of RC Bridge Columns under Seismic Loading (지진하중을 받는 철근콘크리트 교각의 연성도 상관관계)

  • 손혁수;이재훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.51-61
    • /
    • 2003
  • This research is a park of a research program to develope a new design method for reinforced concrete bridge columns under axial load and cyclic lateral load. The objectives of this paper are to investigate the relationship between curvature ductility and displacement ductility and to propose a correlation equation for designing of reinforced concrete bridge columns under axial load and cyclic lateral load. Computer program NARCC was used for parametric study, which was proved to provide good and conservative analytical result especially for deformation capacity and ductility factor compared with test result. A total of 7,200 spirally reinforced concrete columns were selected considering the main variables such as section diameter, aspect ratio, concrete strength, yielding strength of longitudinal and confinement steel, longitudinal steel ratio, axial load ratio, and confinement steel ratio. A new equation between curvature ductility factor displacement ductility factor with the aspect ratio was proposed by investigation of 21,600 data produced from the selected column models by applying 3 different definitions of yield displacement.

Literature Review on Rheological Properties and Required Performances of 3D Printable Cementitious Materials (3D 프린팅 시멘트계 재료의 유변학적 물성과 요구 성능에 관한 문헌 조사)

  • Oh, Sangwoo;Hong, Geuntae;Choi, Seongcheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.41-49
    • /
    • 2021
  • 3D printing techniques have been recently adopted in the construction industry. It mainly utilizes additive manufacturing which is the fabrication process depositing successive layers of materials without any formworks. Conventional cementitious materials may not be directly applicable to 3D printing because 3D printable cementitious materials is required to satisfy such characteristics as pumpability, extrudability, and buildability in a fresh state. This study aimed to investigate rheological properties and required performances of 3D printable cementitious materials, by reviewing existing studies. Test methods and equipments, evaluation results and characteristics of mixture additives were compared. Based on reviews of existing studies, this study indicates that the viscosity is mainly relevant to the pumpability of 3D printable materials whereas the yield stress and thixotropy are important in securing buildability of the materials.

Prediction of the Rheological Properties of Cement Mortar Applying Multiscale Techniques (멀티스케일 기법을 적용한 시멘트 모르타르의 유변특성 예측)

  • Eun-Seok Choi;Jun-Woo Lee;Su-Tae Kang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.69-76
    • /
    • 2024
  • The rheological properties of fresh concrete significantly influence its manufacturing and performance. However, the diversification of newly developed mixtures and manufacturing techniques has made it challenging to accurately predict these properties using traditional empirical methods. This study introduces a multiscale rheological property prediction model designed to quantitatively anticipate the rheological characteristics from nano-scale interparticle interactions, such as those among cement particles, to micro-scale behaviors, such as those involving fine aggregates. The Yield Stress Model (YODEL), the Chateau-Ovarlez-Trung equation, and the Krieger-Dougherty equation were utilized to predict the yield stress for cement paste and mortar, as well as the plastic viscosity. Initially, predictions were made for the paste scale, using the water-cement ratio (W/C) of the cement paste. These predictions then served as a basis for further forecasting of the rheological properties at the mortar scale, incorporating the same W/C and adding the cement-sand volume ratio (C/S). Lastly, the practicality of the predictive model was assessed by comparing the forecasted outcomes to experimental results obtained from rotational rheometer.

Mechanical Properties of Soil under Repeated Load (반복하중(反復荷重)을 받는 흙의 역학적(力學的) 특성(特性))

  • Chun, Byung Sik;Park, Heung Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.113-122
    • /
    • 1990
  • In case of repeated wheel-loads are acted on subbase course material, field test is generally executed to get the design standard, but the study shows dynamic properties of soils especially under repeated loads, which have not been well known to us. We try not only to obtain yield stress and elastic modulus of soil in terms of rheological model interpretation but also to investigate the influence of the repeated loads. Yield stress of soil induces hardening until approaching critical value along with the increase in number of cycle, whereas the change in modulus of elasticity with respect to the number of cycle greatly depends on the strength of repeated stress, if weak in strength of repeated stress, the modulus of elasticity increases along with the number of cycle, while if strong, it tends to decrease.

  • PDF

Structural Characteristics on the Buckling Strength for 600MPa Grade High Strength Steel Compression Members (600MPa급 고강도강 압축재의 좌굴강도에 관한 구조특성)

  • Lee, Myung-Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.609-616
    • /
    • 2010
  • The objective of this study is to investigate the structural character of the buckling strength of 600MPa-class high-strength steel compression members. The buckling strength of circular hollow-section columns is evaluated by a numerical analysis of the stress-strain curves of the tension test results. The numerical analysis was based on the beam-column theory and the tangent modulus theory. It was considered possible to enlarge the nominal yield strength of the 600MPa-class steel.

Structural Behavior of Reinforced Concrete Beams using High Strength Shear Reinforcement (고강도 전단보강 철근을 사용한 철근콘크리트 보의 거동평가)

  • Choi, Im-Jun;Park, Jong-Wook;Hwang, Hyun-Bok;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.3-4
    • /
    • 2009
  • This study predicts the structural behavior of RC beams using high strength shear reinforcement and evaluates current design codes restricting the strength of shear reinforcement steel. Under the present design codes, the yield strength of shear reinforcement steel is restricted to 400MPa. In case that use high yield strength reinforcement steel, could incure heavily crack and deflection at the members of structure, and have not verified ductility capacity, fatigue resisting capacity, shear and torsion resisting capacity, anchoring capacity and seismic capacity. To this end, we evaluate structural behavior of reinforced concrete beams using high strength shear reinforcement.

  • PDF

A study on the change of strength parameters reinforced rock bolt in the ground around tunnel (록볼트로 보강된 터널주변지반의 강도정수 변화에 대한 연구)

  • Kim, Sang-Hwan;Bang, Gyu-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.1
    • /
    • pp.51-61
    • /
    • 2005
  • In general the strength parameter of the ground will be changed by reinforcing the ground around tunnel. In this case, the concept of tunnel design, such as supporting system, excavation, lining and so on, should be modified based on the failure criteria or the ground changed by the reinforcement. This paper presents the variation mechanism of strength parameters and new failure criteria of the reinforced ground. In order to perform this research, theoretical and experimental works were carried out. It was clearly founded that the cohesion of strength parameters is only increased by reinforcement of ground, especially by rock bolting.

  • PDF

Strength and Stress Distribution Behavior for the Connections of Corrugated Steel Plates (파형강판 이음부의 강도 및 응력분포특성에 관한 연구)

  • Hwang, Won Sup;Kang, Seung Pyo;Wi, Young Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.365-375
    • /
    • 2004
  • This paper presents the numerical results in strength and stress distribution behavior for the connections of corrugated steel plates (CSP). The results obtained using the finite element method indicate that the CSP with =30mm of longitudinal edge lap, by the current standard specification, has very conservative values. The results also indicate the difference of strength behavior from the bolt arrangement. The strength behavior of standard corrugated type with staggered holes is only affected by circumferential edge lap, but the edge lap and bolthole spacing have an effect on the strength behavior for the deeply corrugated type with parallel holes. Based on these results, this paper examines the current specification of the connections for CSP.

Ultimate Resisting Capacity of Axially Loaded Circular Concrete-Filled Steel Tube Columns (축력이 재하된 원형 콘크리트 충전강관 기둥의 최대 저항능력)

  • Kwak, Hyo-Gyoung;Kwak, Ji-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.423-433
    • /
    • 2012
  • The axial load on the concrete-filled steel tube (CFT) column produces confinement stress, which enhances strength of the core concrete. The amount of strength increase in concrete depends on the magnitude of produced confinement stress. From nonlinear analyses, the ultimate resisting capacity of the CFT columns subjected to axial loads was calculated. Nonlinear material properties such as Poisson's ratio and stress-strain relation were considered in the suggested model, and the maximum confining stress was obtained by multi axial yield criteria of the steel tube. This proposed model was verified by comparing the analytical results with experimental results. Then, regression analyses were conducted to predict the maximum confining stress according to D/t ratio and material properties without rigorous structural analysis. To ensure the validity of the suggested regression formula, various empirical formulas and Eurocode4 design code were compared.

Design of Ground Floor Slab According to the Method for Evaluating the Tensile Performance of Steel Fiber Reinforced Concrete (강섬유 보강 콘크리트 인장성능 평가방법에 따른 지반 바닥슬래브의 설계)

  • Lee, Jong-Han;Cho, Baik-Soon;Cho, Chang-Oh
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.95-104
    • /
    • 2016
  • Flexural strength of concrete ground slab reinforced with steel fiber is evaluated using the equivalent flexural strength ratio of steel fiber reinforced concrete based on the yield line theory. Recently, the European standard specifies that the tensile performance of the steel fiber reinforced concrete be evaluated directly from the residual flexural strength after the cracking of concrete. Thus, in the study, an experiment was carried out to evaluate the conventional equivalent flexural strength ratio and the residual flexural strength of the steel fiber reinforced concrete. Then the design flexural strength was investigated according to the location of a point load, based on the ratio of the radius of contact area of the load to the radius of relative stiffness. Design flexural capacity obtained from ACI 360R-10 was smaller than that from TR 34 (2003 & 2013). In addition, TR 34 (2013), which evaluates the design flexural capacity based on the residual flexural strength, showed slightly smaller value than TR 34 (2003).