• Title/Summary/Keyword: 항복기준

Search Result 289, Processing Time 0.037 seconds

Development Length Effects of High Strength Headed Bar (고강도 확대머리 이형철근의 정착길이 효과에 관한 실험적 연구)

  • Moon, Jeong-Ho;Oh, Young-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.75-82
    • /
    • 2015
  • An experimental study has been carried out to examine development length effects for high strength headed deformed bars. Current design codes limit the specified yield strength of headed bars to 400 MPa. Such the limit is due to the lack of experimental studies on headed bars made of high strength materials. Thus a test program was planed with headed bars with the yield strength of 600 MPa. The threaded head type with head shapes of round plate and circular cone was selected in this study. The experimental variables were development length, number of bars, and head shape. Specimens were classified into L-type and S-type depending on the development length. The development length of L-type was computed according to the design code without considering the limit. S-type specimens had shorter development lengths than the L-type. Further classification was made depending on the shape of heads. A-types have the head shape of round plate and B-types have the shape of circular cone. Three L-type specimens were fabricated with the variable of number of bars (1, 2, and 3). Four specimens for each of SA and SB types were made with development lengths of 50%, 45%, 40%, and 35% compared with L-type. Pullout tests was carried out with 11 specimens. The test results were compared with computed strengths with the design code equations (Appendix II). Based the current studies, it can be said that high strength headed deformed bars used in this study be able to provide such strengths computed with the current design code without considering the yield strength limit.

Capacity Design of Eccentrically Braced Frame Using Multiobjective Optimization Technique (다목적 최적화 기법을 이용한 편심가새골조의 역량설계)

  • Hong, Yun-Su;Yu, Eunjong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.419-426
    • /
    • 2020
  • The structural design of the steel eccentrically braced frame (EBF) was developed and analyzed in this study through multiobjective optimization (MOO). For the optimal design, NSGA-II which is one of the genetic algorithms was utilized. The amount of structure and interfloor displacement were selected as the objective functions of the MOO. The constraints include strength ratio and rotation angle of the link, which are required by structural standards and have forms of the penalty function such that the values of the objective functions increase drastically when a condition is violated. The regulations in the code provision for the EBF system are based on the concept of capacity design, that is, only the link members are allowed to yield, whereas the remaining members are intended to withstand the member forces within their elastic ranges. However, although the pareto front obtained from MOO satisfies the regulations in the code provision, the actual nonlinear behavior shows that the plastic deformation is concentrated in the link member of a certain story, resulting in the formation of a soft story, which violates the capacity design concept in the design code. To address this problem, another constraint based on the Eurocode was added to ensure that the maximum values of the shear overstrength factors of all links did not exceed 1.25 times the minimum values. When this constraint was added, it was observed that the resulting pareto front complied with both the design regulations and capacity design concept. Ratios of the link length to beam span ranged from 10% to 14%, which was within the category of shear links. The overall design is dominated by the constraint on the link's overstrength factor ratio. Design characteristics required by the design code, such as interstory drift and member strength ratios, were conservatively compared to the allowable values.

Statistical Variability of Mechanical Properties of Reinforcements (철근 콘크리트용 봉강의 역학적 특성의 통계적 변동성)

  • Kim, Jee Sang;Paek, Min Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.115-120
    • /
    • 2011
  • The strength of reinforced concrete members has uncertainty from material properties of, concrete and reinforcements, section dimensions, and construction errors and so on. The accurate evaluation of these uncertainties is necessary to assure the reasonable safety. The uncertainties should be taken into account in design using structural reliability theory which requires probabilistic models for such uncertainties. In current Korean design code, most reliability evaluations were performed based on foreign data because of lack of local data. In this paper, the probabilistic models for yield strength of reinforcements were developed based on local data. The effects of various factors, nominal yield strength, diameter of reinforcements, and companies, on the models are also examined. According to data analysed, the effects of those factors are not significant. The probability model for yield strength of reinforcements in Korea can be expressed with Beta distribution based on collected data.

Local Buckling and Inelastic Behaviour of 800 MPa High-Strength Steel Beams (800MPa급 고강도강 보 부재의 국부좌굴 및 비탄성 거동)

  • Lee, Cheol-Ho;Han, Kyu-Hong;Kim, Dae-Kyung;Park, Chang-Hee;Kim, Jin-Ho;Lee, Seung-Eun;Ha, Tae-Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.479-490
    • /
    • 2012
  • Flexural tests on full-scale H-shaped beams, built up from high-strength steels (HSB800 and HSA800) with a nominal tensile strength of 800 MPa, was carried out to study the effect of flange slenderness of high-strength steel on flexural strength and rotation capacity. The primary objective was to investigate the appropriateness of extrapolating current stability criteria (originally developed for ordinary steel) to high-strength steel. The performance of high-strength steel specimens was very satisfactory from the strength, but not from the rotation capacity, perspective. The inferior rotation capacity of high-strength steel beams was shown to be directly attributable to the absence of a distinct yield plateau and the high yield ratio of the material. Residual stress measurements reconfirmed that the magnitude of the residual stress is almost independent of the yield stress of the base metal.

Shape Optimization of Ball Valve for High Temperature (고온용 볼 밸브의 형상 최적화)

  • Kim, Nam-Hee;Byeon, Ji-Hoon;Lee, Kwon-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • The main purpose of the ball valve ball is to be moved by the rotation of the stem when fully open or completely closed. In this study the heat of the initial model, which used a structure interaction analysis technique, tried to examine the structural safety of the high temperature for the ball valve. In the initial model the stress of the exiting sheet was more than the yield strength. We selected two design shapes with variables of length and thickness for the optimization of the sheet. The Kriging interpolation method was applied to a meta-model-based optimization technique. As a result, it was possible to find a thickness and length for the sheet within the yield strength. This was done by measuring the value of the capacity coefficient of the valve and evaluating the performance of the ball valve.

Flexural Behaviors of Reinforced Concrete Beams Strengthened with Carbon Fiber Sheets (탄소섬유시트로 보강된 철근콘크리트 보의 휨 거동)

  • Kim, Seong-Do
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.227-234
    • /
    • 2010
  • To investigate the flexural behavior of RC beams strengthened with carbon fiber sheets, 1 control beam and 8 strengthened beams(4 NU-beams without U-shaped band and 4 U-beams with U-shaped band) are tested. The variables of experiment are composed of the number of carbon fiber sheets and the existence of U-shaped band, etc. The experimental results showed that the strengthening system with U-shaped band controls the premature debonding and provides a more ductile failure mode than the strengthening system without U-shaped band. It can be found from the load-deflection curves that as the number of fiber sheets is increased, the maximum strength and the flexural rigidity is increased. The experimental results are compared with the analytical results of nonlinear flexural behaviors for strengthened RC beam. The proposed analytical method for strengthened beams is proved to be accurate by an experimental investigation of load-deflection curve, yield load, maximum load, and flexural rigidities in the pre- and post-yielding stages.

Effects of Axial Misalignments on the Torque Specimens Using Finite Element Analysis (유한요소해석기법을 이용한 토크 시편의 축 오열 영향 분석)

  • Kim, Ju-Hee;Kim, Yun-Jae;Huh, Yong-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1461-1469
    • /
    • 2011
  • Using three-dimensional (3-D) FE analyses, this paper provides a method for analyzing the effects on stresses and strains produced by angular and concentric misalignment of a test specimen for a torsion test. To quantitativele compare of the FE results, the average bending strain for the angular, concentric, and combined misalignment was proposed. To verify the effects of axial misalignment of the test specimens, we used both circular and tubular specimens. From the FE results, we proposed general predictions for the effects caused by the various types of axial misalignment and its direction. In addition, we confirmed the effect of initial yielding moment based on the initial yielding condition for axial misalignment of specimens in torsion tests.

Characteristics of Stress-Strain for Pocheon stone sludge (포천석분의 응력-변형률 거동특성)

  • Kim, Chan-Kee;Bak, Gueon-Jun;Cho, Won-Beom;Lee, Jong-Cheon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.55-64
    • /
    • 2013
  • In this study, a series of the isotropic compression-expansion tests and the Undrained triaxial tests were performed on low-plastic silt of Pocheon stone sludge. Using the tests results the characteristic of the parameters of Lade's single hardening constitutive model were investigated. We also observed that predicted values from the Lade's single hardening constitutive model were well consistent with the observed data. In experimental results the deviator stress showed the work hardening behaviour after reaching its yield stress. Therefore practically useful failure criterion for low-plastic silt were required. The stress-strain behavior predicted by 11 soil parameters are compared with the results obtained 9 parameters by correlation between h and ${\eta}_1$ and constant ${\alpha}$. They are poor matched each other.

The Dynamic Nonlinear Analysis of Shell Containment Building subjected to Aircraft Impact Loading (항공기 충돌에 대한 쉘 격납건물의 동적 비선형해석)

  • 이상진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.567-578
    • /
    • 2002
  • The main purpose of this study is to investigate the dynamic behaviour of containment building in nuclear power plant excited by aircraft impact loading using a lower order 8-node solid element. The yield and failure surfaces for concrete material model is formulated on the basis of Drucker-Prager yield criteria and are assumed to be varied by taking account of the visco-plastic energy dissipation. The standard 8-node solid element has prone to exhibit the element deficiencies and the so-called B bar method proposed by Hughes is therefore adopted in this study. The implicit Newmark method is adopted to ensure the numerical stability during the analysis. Finally, the effect of different levels of cracking strain and several types of aircraft loading are examined on the dynamic behaviour of containment building and the results are quantitatively summarized as a future benchmark.

A Study on the Flexural Performance of Steel Fiber-Reinforced Beams lightly Reinforced Below the Minimum Steel Reinforcement (최소철근량 이하로 보강된 강섬유보강 보의 휨성능 고찰)

  • Kang, Duk-Man;Park, Yong-Gul;Moon, Do-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.35-44
    • /
    • 2017
  • In this study, steel fiber-reinforced concrete beams with ordinary steel reinforcements, that are below minimum steel reinforcement amount specified in domestic concrete structure design code, were tested in flexure until failure. Steel reinforcement ratio considered were 44%, 66%, 78% and 100% of the minimum steel reinforcement. Considered steel fiber volume fractions were 0.25%, 0.50%, 0.75% and 1.00%. In results, it is confirmed that steel fibers greatly improve crack performance. Also, the steel fibers contributed to increment in yield load not in ultimate load. But the increment was not greater than the reduction by steel reinforcement reduction. The use of steel fibers in RC beams lightly reinforced below the minimum reinforcement ratio specified design code reduced ductility greatly. Consequently, steel reinforcement ratio in steel fiber-reinforced beams lightly reinforced below the minimum steel reinforcement should be increased in order to enhance proper ductility.